joined the faculty at Southern University in Baton Rouge, Louisiana in August 2002 and is currently a professor and chair of the Electrical Engineering Department. Dr. Lacy specializes in developing, man- ufacturing, and characterizing electronics based microsensors for various applications (including sensors for biomedical applications). c American Society for Engineering Education, 2020A Service-oriented Learning Approach for the Electrical Engineering Capstone DesignCourse Introduction, Senior Design Courses Project-based learning (PBL) provides a contextual environment that is making learning excitingand relevant to modern industries. Projects are providing opportunities for students to explorereal
Classroom,” LEGO Engineering, 2014. [Online]. Available: http://www.legoengineering.com/learning-stem-in-the-classroom/.[6] “Criteria for Accrediting Engineering Programs, 2020 – 2021,” abet.org, 2020. [Online]. Available: https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-progr ams-2020-2021/. [Accessed: 21-Jan-2020].[7] B. I. Hyman, “From Capstone to Cornerstone: A New Paradigm for Design Education,” Int. J. Eng. Educ., vol. 17, no. 4–5, pp. 416–420, 2001.[8] R. N. Savage, K. C. Chen, and L. Vanasupa, “Integrating Project-based Learning throughout the Undergraduate Engineering Curriculum,” vol. 8, no. 3, pp. 15–27, 2007.[9] C. M. Kellett, “A project-based learning
reasoning used by five differentmembers of a mechanical engineering capstone design team as they partnered with a veterinarianto design a device for horse lung functioning assessment. Technology for veterinary medicinecan be a rich and engaging context for undergraduate design projects. Veterinary technologiesoffer an appropriate level of complexity and provide a new viewpoint on science concepts thatare part of the mechanical engineering canon [7], [8]. Moreover, because veterinarians have bothvery real technological needs and deep STEM knowledge to help mentor students, they can beideal capstone design clients.This case study looks specifically at one fourth-year undergraduate engineering team whosecapstone design client was a professor of
Industrial Engineering and Applications (ICIEA), April 21-23, 2017, Nagoya, Japan, pp. 275-278.[4] O. Lawanto and A. Febrian, “Student self-regulation in Capstone design courses: A case study of two project teams,” in Proc. IEEE Frontiers in Education Conference, Oct 12-15, 2016, Erie, PA, pp. 1-5.[5] W. Lee, “Assessment of self-regulated learning in senior capstone design,” in Proc. 8th Annual Process Education Conf., June 14-17, 2018, Erie, PA, pp. 1-8.[6] M.M. Vázquez, M.C. Rodríguez, and M.L. Nistal, “Analysis of Self-Regulated Learning Strategies Oriented to the Design of Software Support,” in Proc. 2014 Frontiers in Education Conf. (FIE), Oct. 22-25, 2014, Madrid, Spain, pp. 1-9.[7] K. Arnsdorff, A. Chen, R. McCord, and S
Paper ID #31050Development of A Holistic Cross-Disciplinary Project Course Experienceas a Research Platform for the Professional Formation of EngineersDr. Kakan C Dey P.E., West Virginia University Dr. Kakan Dey is an Assistant Professor at the Wadsworth Department of Civil and Environmental Engi- neering, West Virginia University, WV, USA. He completed his Ph.D. in Civil Engineering from Clemson University in 2014 and M.Sc. in Civil Engineering from Wayne State University in 2010. Dr. Dey was the recipient of the Clemson University 2016 Distinguished Postdoctoral Award. His primary research area includes intelligent
disciplines. In the second-year training, students took multidisciplinarycourses (i.e., materials science, informatics, and engineering design), and then engaged in aninterdisciplinary capstone course (materials design studio). This sequencing is designed toprovide students with well-grounded experience that would integrate the materials science,engineering design, and informatics into their interdisciplinary capstone design projects andinternships. Students were encouraged to complete summer internships during the two years oftraining. Additional program components, such as mentoring resources and tools for careerdevelopment, were offered during the academic year for all students in the program. Theseprogram components included ePortfolios
removing low and cross loading items [1], we identified six latentdimensions covered by 18 items: individual consequentiality, shared consequentiality, learningas consequentiality, constrainedness, shared tentativeness / ill-structuredness, and individualtentativeness / ill-structuredness.Introduction and research purposeUndergraduate engineering programs have increasingly incorporated design projects, not just asfirst-year and capstone experiences, but in core courses as a spine [2-5]. However, there aremany decisions to make in developing a design project and for those who lack the resources thatare sometimes invested in capstone experiences, many limitations. For instance, design projectsmay include clients and specific context, or they may be
) to explore the best pedagogical practices to improve the efficiency integrating classroom project-based learning and students’ real-world problem-solving practice. I have MS degree from Florida State University in Curriculum and Instruction and BA degree from China Nanchang University in English. I speak English, Chinese, and some Japanese. I am a proactive person. If you are interested in my research topic, please feel free to contact me via email: mt14n@my.fsu.eduMr. Shayne Kelly McConomy, Florida A&M University/Florida State University Shayne K. McConomy is the Capstone Design Coordinator in the Department of Mechanical Engineer- ing at FAMU-FSU College of Engineering; He holds a PhD in Automotive
: Challenges with Teaming Instruction and Managing DysfunctionIntroductionThis is a Work-in-Progress paper. Teaming continues to be an important dimension ofengineering work and by extension a required outcome of engineering education. Despite theemphasis and importance ABET places on teaming and the efforts of institutions to meet theserequirements [1], students may or may not develop effective team behaviors as a result of thevarious team experiences they have in an engineering curriculum. Researchers have noted thatthese skills have traditionally been considered “outside of the curriculum” and the instruction ofthese skills has been primarily relegated to cornerstone and capstone design courses. Even inthese courses
engineering and engineering technology, problem-based andproject-based learning are different. According to Lee [4], the focus of problem-based learning isthe problem solving and learning process, while the project outcome is the focus of project-basedlearning. Since project-based learning is commonly seen in senior students’ capstone designcourses, problem-based learning can be used as a prelude to project-based learning in priorcourses. In this way, students can develop the skills necessary to apply to project-based learningactivities.Gijbels et al. [5] state that assessments for problem-based learning can include collaborativeteamwork assessment, exams, reports, and self and peer assessment. Several factors play a role inthe impacts of PBL that
. Otherplans included graduate study in STEM fields, professional school (e.g. medicine or law), orother jobs not in engineering fields.Respondents were classified as feeling like they belong or feel like an engineer (Q13 of thesurvey) if they selected “Somewhat Agree”, “Agree”, or “Strongly Agree”. Most respondentsreported that they feel like they belong in the school (86%) and their major (84%), and theyfeel like an engineer (80%). Interestingly, 67% of respondents who agreed that they feel likean engineer indicated that the experience that made them feel that way occurred at their ownuniversity (i.e., UVA).Research-Experienced RespondentsExcluding capstones and course-structured laboratory projects, 39% of respondents (n = 303)have participated in
-efficacy beliefs and outcome expectations [1].The belonging component includes a set of activities to develop professional identity and senseof belonging. Activities such as establishing learning communities through project-orientedengineering teams, aim at developing freshmen and sophomores’ interactions with seniorstudents via capstone and design-oriented courses. These interactions are structured around twoone-credit courses, Introduction to Engineering (INGE-3001) and Introduction to LearningCommunities (INGE-3002).In the formative component, interventions in the form of talks and soft-skill workshops are aimedat training students using well-known high-impact educational practices [21]. Trainings basedon the Affinity Research Group (ARG) model
course and the students that are working within the boundaries of thecourse [4]. Therefore, work is being done to design assessment that allows for student freedomwith strategies like project-based learning and learning portfolios [5]. These forms of assessmentderive from work on open-ended learning environments and self-regulated learning. Open-endedlearning is a pedagogical approach that harnesses students’ intrinsic motivation to learn [6], andself-regulated learning is when students make goals and evaluate their learning in order topractice metacognition [7]. Many researchers have found benefits when implementing moreopportunities for student-directed learning both in higher education [8–11] and the K-12system [12]. Giving students ownership
- Clemson Engineers for Developing Countries (CEDC) and Clemson Engage. Both courses include trips to developing countries, international internships and sig- nificant fund-raising to support projects with community partners. As a result of her efforts, the CEDC program grew from 25 students to over 100 from 30 different departments and was recognized by the Institute for International Education (IIE) with the Andrew Heiskell Award. As a first generation student, and the first tenured female in her department, Dr. Ogle is an advocate for improving inclusion and di- versity in Civil Engineering. In 2012, she was recognized by President Obama as a Champion of Change for Women in STEM. She continues to serve the university
Paper ID #31759Combining Strategies for Leadership Development of Engineering StudentsDr. Nayda G. Santiago, University of Puerto Rico, Mayaguez Campus Nayda G. Santiago is professor at the Electrical and Computer Engineering department, University of Puerto Rico, Mayaguez Campus (UPRM) where she teaches the Capstone Course in Computer Engineer- ing. She received an BS in EE from the University of PR, Mayaguez in 1989, a MEng in EE from Cornell University in 1990, and a PhD in EE from Michigan State University in 2003. She leads the Southeast region of the Computing Alliance for Hispanic Serving Institutions (CAHSI). Dr
Paper ID #30007Operationalizing Jonassen’s Design Theory of Problem Solving: Aninstrument to characterize educational design activitiesDr. Ada Hurst, University of Waterloo Ada Hurst is a Continuing Lecturer in the Department of Management Sciences at the University of Waterloo. She has taught and coordinated the capstone design courses in the Management Engineering program since 2011. She also teaches courses in organizational theory, technology, and behaviour. Her research falls in the areas of design cognition and processes, engineering design education, and gender issues in STEM disciplines. She is interested in
might be all but one. In this method,students can also choose to work towards the grade they want in order to spend their timeelsewhere (Nilson, 2015). Another instructor might use a mix of traditional grading and pass/failgrading. For example, to earn an A in a course, a student may have to receive an average examscore of 80%. The instructor can also set bars for specific grade levels such as a C resulting fromfailing a peer evaluation. In all of these systems, missing one element on the overall gradechecklist results in a lower grade.As all elements become pass or fail, the specifications for an assignment must be made veryclear. Writing good specifications is a lot like writing good requirements for a project. Just likerequirements in
research scientist for the Center for Research on Education in Science, Mathematics, Engineering and Technology (CRESMET), and an evaluator for several NSF projects. His first research strand concentrates on the relationship between educational policy and STEM education. His second research strand focuses on studying STEM classroom interactions and subsequent effects on student understanding. He is a co- developer of the Reformed Teaching Observation Protocol (RTOP) and his work has been cited more than 2200 times and he has been published in multiple peer-reviewed journals such as Science Education and the Journal of Research in Science Teaching.Prof. Stephen J Krause, Arizona State University Stephen Krause is
Paper ID #30058Developing the ESLS - Engineering Students Learning Strategies instrumentDr. Sreyoshi Bhaduri, McGraw-Hill Sreyoshi Bhaduri leads Global People Analytics at McGraw Hill - where she works on projects leveraging employee data to generate data-driven insights for decisions impacting organizational Culture and Talent. Sreyoshi has an interdisciplinary expertise having earned her Ph.D. in Engineering Education from the College of Engineering at Virginia Tech and Masters degrees in Applied Statistics and Mechanical En- gineering. Her research interests include women in technology and industry, studying the impact
interaction within the learning environment [26, 42-44]. Another set of techniques being introduced is related to text analysis. For instance,researchers went beyond traditional coding approaches to analyzing texts and used unsupervisedlearning clustering algorithms and information retrieval techniques for text analysis [45].Researchers also used text mining and web log mining techniques to gain deeper insights onmajor discussion topics in design capstone engineering courses [36]. As such, new data sources,integrated data systems and emerging analytical techniques demand technology-enhancedlearning analytics system design emerge [46] and, once the system is in place, will enable what iscalled “multimodal learning analytics” [47]. These developments
Paper ID #30014Utilizing Peer Learning Assistants to Improve Student Outcomes in anIntroductory ECE CourseDr. David John Orser, University of Minnesota, Twin Cities David Orser teaches and develops undergraduate education curriculum with a focus on laboratory courses for the University of Minnesota, Twin Cities, Electrical and Computer Engineering Department. His courses leverage project-based learning, experiential learning, and self-paced activities. David has over ten years of industry experience specializing in mixed-signal high-speed integrated circuit design, power systems, and power electronics.Kyle Dukart
recognized as essential for spurring positiveattitudes and action [37] and igniting deep personal growth and self-actualization [38], [39], [40].Contextual Awareness (Picture Making)The ability to maintain a mental model of a current situation and then contextualize newsituations was a heavily emphasized behavior observed across the resilience literature. Writingabout cognitive processes and situational awareness related to aviation human factors, Endsley’sdefinition of situational awareness in aviation operating environments provided a foundation tocontext-driven awareness: “The perception of the information in the environment within avolume of time and space, the comprehension of their meaning and the projection of their statusin the near future