- Clemson Engineers for Developing Countries (CEDC) and Clemson Engage. Both courses include trips to developing countries, international internships and sig- nificant fund-raising to support projects with community partners. As a result of her efforts, the CEDC program grew from 25 students to over 100 from 30 different departments and was recognized by the Institute for International Education (IIE) with the Andrew Heiskell Award. As a first generation student, and the first tenured female in her department, Dr. Ogle is an advocate for improving inclusion and di- versity in Civil Engineering. In 2012, she was recognized by President Obama as a Champion of Change for Women in STEM. She continues to serve the university
Paper ID #31759Combining Strategies for Leadership Development of Engineering StudentsDr. Nayda G. Santiago, University of Puerto Rico, Mayaguez Campus Nayda G. Santiago is professor at the Electrical and Computer Engineering department, University of Puerto Rico, Mayaguez Campus (UPRM) where she teaches the Capstone Course in Computer Engineer- ing. She received an BS in EE from the University of PR, Mayaguez in 1989, a MEng in EE from Cornell University in 1990, and a PhD in EE from Michigan State University in 2003. She leads the Southeast region of the Computing Alliance for Hispanic Serving Institutions (CAHSI). Dr
spatial skillsassessment in their final year. In order to incentivize participation, the assessment was offered asan extra credit assignment in their senior design (capstone) course.In this study, the PSVT:R taken in the first year is referred to as the entrance exam, while thePSVT:R taken in the final year is referred to as the exit exam.ResultsA total of 120 graduating engineering students (74 male, 46 female) from a variety of majors (61Mechanical, 42 Civil, 18 Other) participated in this study. Scores on the entrance exam (M =24.38, SD = 4.01) and exit exam (M = 24.84, SD = 3.89) are compared in Figure 1a. Differencesare not significant, t(119) = -1.248, p = .214, although mean and median test scores in the finalyear were slightly higher than
Retention Program offers tutorial sessions and career services.The mentors perform a comprehensive analysis of each student’s academic records in order to monitorthe pace of progress throughout the program. Upon completing eighty (80) percent of the program, thestudents are advised to meet the Department Head in order to plan for a successful completion of theundergraduate capstone design project in conjunction with a local industry. The students are alsomentored and encouraged to participate in the activities of the professional engineering societies, suchas ASME, IEEE, ASHRAE, SAE, etc.Department of Mechanical and Aerospace Engineering, North Carolina (NC) State University, USAThis is a department much larger than the previous ones discussed here
Paper ID #30007Operationalizing Jonassen’s Design Theory of Problem Solving: Aninstrument to characterize educational design activitiesDr. Ada Hurst, University of Waterloo Ada Hurst is a Continuing Lecturer in the Department of Management Sciences at the University of Waterloo. She has taught and coordinated the capstone design courses in the Management Engineering program since 2011. She also teaches courses in organizational theory, technology, and behaviour. Her research falls in the areas of design cognition and processes, engineering design education, and gender issues in STEM disciplines. She is interested in
will cost OEMs billions of dollars. Boeing currentlyestimates its loss, due to the 737-max grounding, at 19 billion to date [63]. In an attempt tocorrect for past financial centric mistakes Boeing appears to be moving to re-empower theirengineers [64]. Page 11 of 16A competitive manufacturing capstone course could consist of both management andengineering design students. The management students, representing finance, could constantlyrequest cost reduction after every design iteration. Initially cost reduction can easily achieved butas the project progresses cost reductions becomes increasingly difficult and real tension couldarises between students
action.Critical reflection is embedded within a program that recruits both engineers and non-engineers,with teaching and learning strategies drawn from the social sciences and humanities andintegrated with engineering management and problem-based learning. The program connectsstudents to a project partner in Sierra Leone or Zambia, the students work to understand theirpartners’ needs and assets and then develop an intervention plan consistent with the aims of theSDGs.In this paper, we provide results of a critically reflexive thematic analysis to explore the nature ofstudent reflections within the context of this interdisciplinary program. Evidence suggests arange of student interpretation of the purpose and application of critical reflection. Some are
papers on these subjects. His research awards include a Microsoft Research Software Engineering Innovation Foundation Award and an IBM Faculty Award. Tilevich has earned a B.A. summa cum laude in Computer Science/Math from Pace University, an M.S. in Information Systems from NYU, and a Ph.D. in Computer Science from Georgia Tech. At Virginia Tech, Tilevich leads the Software Innovations lab. The lab’s research projects have been supported by major US federal funding agencies (i.e., NSF, ONR, AFOSR) and private industry. Tilevich is also a professionally trained classical clarinetist, with experience in orchestral, chamber, and solo performances.Dr. Simin Hall, Virginia Tech Dr. Simin Hall is a research
additive manufacturing makerspace (AMM) into two separate rooms calledbasic and advance 3D printing makerspaces, as shown in Figure 2. Basic 3D printings are mostlyfor the freshman and sophomore engineering students who are just learning 3D printing. Whileadvance 3D printing makerspace are dedicated to more serious 3D printing projects of junior andsenior engineering students for making functional parts and prototypes of advance materials(composites, ceramics, metals) for their industry led capstone project or upper division classprojects. The AMM houses various types of AM technologies such as fused deposition modeling(FDM) aka fused filament fabrication (FFF) for polymers and composites, Continuous FilamentFabrication (CFF) for composites
advisory board of these key campus stakeholders to get feedback on theprogrammatic development and generate ideas for future endeavors. Figure 4: Timeline of OHI/O program developmentFor program development, be sure to work with curricular partners, such as departments ofcomputer science, electrical engineering, physics, or data analytics, as well to find ways tointegrate hackathon and makeathon products into semester-long capstone projects, independentstudies, or other coursework. This process of building on event successes allows motivatedstudents opportunities to continue to work on their projects beyond a weekend event. The studentleaders have now increased their independent study credits by engaging on a project that may
Engineering Education at Virginia Tech, where she directs the Vir- ginia Tech Engineering Communications Center (VTECC). Her research focuses on communication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and is co-PI on numerous NSF grants exploring communication, design, and identity in engineering. Drawing on theories of situated learning and identity development, her work includes studies on the teaching and learning of communication, effective teaching practices in design education, the effects of differing design pedagogies on
Paper ID #28642Correlating the student engineer’s design process with emotionalintelligence.Dr. Ryan H Koontz, South Dakota School of Mines and Technology Ryan Koontz received his Bachelor’s degree in Mechanical Engineering in 1999 and an M.S. degree in mechanical engineering in 2002 from the South Dakota School of Mines and Technology (SDSMT). In 2004, Ryan joined the Center of Excellence for Advanced Multi-Disciplinary Projects (CAMP) as the manufacturing specialist. He currently instructs students of CAMP through the design and manufacturing process and helps produce parts for the co-curricular teams of CAMP. He completed
settings.Prof. Zahed Siddique, University of Oklahoma Zahed Siddique is a Professor of Mechanical Engineering at the School of Aerospace and Mechanical Engineering of University of Oklahoma. His research interest include product family design, advanced material and engineering education. He is interested in motivation of engineering students, peer-to-peer learning, flat learning environments, technology assisted engineering education and experiential learning. He is the coordinator of the industry sponsored capstone from at his school and is the advisor of OU’s FSAE team.Prof. Yingtao Liu, University of Oklahoma Dr. Yingtao Liu is an assistant professor in the School of Aerospace and Mechanical Engineering at the
Engineering at the Uni- versity of Arizona. His primary responsibilities include academic affairs, recruitment, admissions and retention programs, and introductory and interdisciplinary capstone engineering design courses. Bay- gents is a member of the Department of Chemical & Environmental Engineering (ChEE) and the Program in Applied Mathematics at the UA. He joined the Engineering faculty as an assistant professor in 1991, the same year he received a Ph.D. in chemical engineering from Princeton University. He also holds an M.A. (Princeton, 1981) and a B.S. (Rice, 1980) in chemical engineering. Baygents has received the Arizona Mortar Board Senior Honor Society award for outstanding faculty service and the College of
Paper ID #29123Extending Faculty Development through a Sustainable Community of Prac-ticeSarah Hoyt, Arizona State University Sarah Hoyt is currently the Education Project Manager for the NSF-funded JTFD Engineering faculty development program. Her educational background includes two Master’s degrees from Grand Canyon University in Curriculum and Instruction and Education Administration. Her areas of interest are in student inclusion programs and creating faculty development that ultimately boost engagement and per- formance in students from lower SES backgrounds. Prior to her role as project manager, Sarah worked as
Education in Science, Mathematics, Engineering and Technology (CRESMET), and an evaluator for several NSF projects. His first research strand concentrates on the relationship between educational policy and STEM education. His second research strand focuses on studying STEM classroom interactions and subsequent effects on student understanding. He is a co- developer of the Reformed Teaching Observation Protocol (RTOP) and his work has been cited more than 2800 times and he has been published in multiple peer-reviewed journals such as Science Education and the Journal of Research in Science Teaching.Lydia Ross, Arizona State University Dr. Lydia Ross is a clinical assistant professor in the Mary Lou Fulton Teachers College
management, contracting business, or thesis (capstone).Table 4. provides further details on student respondents.Table 3.Faculty Respondent Data Program A Program B Program C Program D Program E Respondent 1 2 3 1 1 1 1 2 # Taught full No No No No No No No No course on ethics Taught Yes, Yes Yes, Yes, Introduction to Yes, Professional & Yes Yes, Yes, Project course(s) that Construction
fromeach faculty member to use the materials they had submitted as part of the study.Courses included in the review process are listed below in Table 1. The review process includedonly undergraduate core (i.e. required for all students) courses with an MCEN prefix and did notinclude the department’s sophomore seminar or senior design capstone course. Non-MCEN corecourses were excluded because they are managed by other departments and are therefore largelyoutside the current initiative’s realm of influence. The sophomore seminar and senior capstonewere excluded because they are already highly industry focused, with nearly 100% of the coursecontent centering specifically on exposing students to processes, projects, and contacts within thenetwork
, andwelfare, as well as global, cultural, social, environmental, and economic factors. Thisimplies that they all need to be explicitly considered.This should be approached systematically; otherwise, one of these factors will be missed.The consideration of public health, safety and welfare are covered for most civilengineering design projects through the use of codes that govern a design. Codes andstandards were developed solely for that purpose.The most straight-forward approach is to require students to separately describe theglobal, cultural, social, environmental and economic considerations as a graded part oftheir design submission. It might be helpful for the instructor to preface the assignmentwith some examples of these considerations on a
-controlled Unit Operations experiments, and incorporating Design throughout the Chemical Engineering curricu- lum. She currently works as a freelance Engineering Education Consultant and Chemical Engineer. She is the Project Manager for NSF grant #1623105, IUSE/PFE:RED: FACETS: Formation of Accomplished Chemical Engineers for Transforming Society, for which she is advising and coordinating assessment.Dr. Abhaya K. Datye, University of New Mexico Abhaya Datye has been on the faculty at the University of New Mexico after receiving his PhD in Chem- ical Engineering at the University of Michigan in 1984. He is presently Chair of the department and Distinguished Regents Professor of Chemical & Biological Engineering. From
Research in 2006,” Des. Res. Q., Sep. 2006.[2] E. Sanders, “An Evolving Map of Design Practice and Design Research,” Interactions, pp. 13–17, Dec. 2008.[3] IDEO, The Field Guide to Human-Centered Design. 2015.[4] C. B. Zoltowski, W. C. Oakes, and M. E. Cardella, “Students’ ways of experiencing human-centered design,” J. Eng. Educ., vol. 101, no. 1, pp. 28–59, 2012.[5] I. Mohedas, S. Daly, and K. Sienko, “Design Ethnography in Capstone Design: Investigating Student Use and Perceptions,” Int. J. Eng. Educ., vol. 30, no. 4, pp. 888–900, 2014.[6] R. P. Loweth, S. R. Daly, J. Liu, and K. H. Sienko, “Assessing Needs in a Cross-Cultural Design Project: Student Perspectives and Challenges,” Int. J. Eng. Educ., vol. 36, no. 2, pp
Paper ID #28754Reflection in Time: Using Data Visualization to Identify StudentReflection Modes in DesignDr. Corey T Schimpf, The Concord Consortium Corey Schimpf is a Learning Analytics Scientist at the Concord Consortium with interest in design re- search and learning, learning analytics, research methods and underrepresentation in engineering. A ma- jor strand of his work focuses on developing and analyzing learning analytics that model students’ design practices or strategies through fine-grained computer-logged data from open-ended technology-centered science and engineering projects. A closely related strand focuses
might be all but one. In this method,students can also choose to work towards the grade they want in order to spend their timeelsewhere (Nilson, 2015). Another instructor might use a mix of traditional grading and pass/failgrading. For example, to earn an A in a course, a student may have to receive an average examscore of 80%. The instructor can also set bars for specific grade levels such as a C resulting fromfailing a peer evaluation. In all of these systems, missing one element on the overall gradechecklist results in a lower grade.As all elements become pass or fail, the specifications for an assignment must be made veryclear. Writing good specifications is a lot like writing good requirements for a project. Just likerequirements in
Paper ID #30184Development of Employability Skills in Engineering Disciplines throughCo-opMs. Haaniyah Ali, York University Haaniyah Ali is a Mechanical Engineering undergraduate student from York University, class of 2020. She has worked on engineering co-op education research projects since September 2018 and presented her first paper at a conference in June 2019. She is passionate about understanding the co-op education system, to provide the best experience for students. She is also very involved in her school community and works with students and faculty alike to improve community engagement.Dr. Jeffrey Harris, York
1981-1989 Associate Director for Finance and Administration, Center for Electromagnetics Research (CER), Northeastern University. Pub- lications/Papers: Reenergizing and Reengaging Students Interest through CAPSULE; A Novel and Evolu- tionary Method on Educating Teachers to Promote STEM Careers Jessica Chin, Abe Zeid, Claire Duggan, Sagar Kamarthi (IEEE ISEC 2011); and ”Implementing the Capstone Experience Concept for Teacher Professional Development” Jessica Chin, Abe Zeid, Claire Duggan, Sagar Kamarthi (ASEE 2011). Rel- evant Presentations: ”K-12 Partnerships” (Department of Homeland Security/Centers of Excellence An- nual Meeting 2009); ”Building and Sustaining K-12 Educational Partnerships” (NSF ERC 2007 - 2010
, e.g., capstone projects.However, students would benefit from, and are interested in, integrating holistic educationthroughout the curriculum. Moreover, university engineering programs that are accredited byABET are required to meet these objectives. In their recent redevelopment of the student outcomescriteria, ABET [1], [2] identified seven primary outcomes for students. Of these, items two andfour focus on holistic engineering, emphasizing global cultural, social, environmental, andeconomic factors.To address all of the critical aspects of engineering projects, students must successfully analyze therequirements, synthesize information, and evaluate several design options for a given problem.These cognitive skills match well with Bloom’s
Paper ID #30242Algorithm for Consistent Grading in an Introduction to Engineering CourseProf. Joshua A Enszer, University of Delaware Joshua Enszer is an associate professor in Chemical and Biomolecular Engineering at the University of Delaware. He has taught core and elective courses across the curriculum, from introduction to engineering science and material and energy balances to process control, capstone design, and mathematical modeling of chemical and environmental systems. His research interests include technology and learning in various incarnations: electronic portfolios as a means for assessment and professional
their senior capstone projects. His current projects include indus- try integration in the curriculum, undergraduate professional development, and entrepreneurial minded learning in the classroom.Dr. Nathan Hyungsok Choe, The Ohio State University Dr. Nathan (Hyungsok) Choe is a research assistant professor in department of engineering education at the Ohio State University. He obtained his PhD in STEM education at UT Austin. His research focuses on the development of engineering identity in graduate school and underrepresented group. Dr. Choe holds master’s and bachelor’s degrees in electrical engineering from Illinois Tech. He also worked as an engineer at LG electronics mobile communication company.Amena Shermadou
the extent to which creative ideation may be modulated by prior knowledge and training.Ms. Yushuang Liu, The Pennsylvania State University Yushuang Liu is a graduate student in Psychology and Language Science at Penn State. She is generally interested in natural speech processing using electroencephalogram. She has been actively involved in creativity projects examining how to facilitate divergent thinking abilities in engineering students.Dr. Danielle S. Dickson, Pennsylvania State University Dr. Dickson received her a Ph.D. from the University of Illinois at Urbana-Champaign in 2016 with a dissertation examining the memory system’s representation of numerical information, using behavioral and electrophysiological
. Specifically, allnew faculty participate in a ~6 weeklong initial summer training workshop run at the departmentlevel. Here, new faculty are given the opportunity to develop relationships with their facultycohort as they explore foundational teaching skills. New faculty members also completenumerous events designed to indoctrinate them into our university’s community. Beyond initialsummer training, our university maintains the Center for Faculty Excellence (CFE), whichprovides numerous faculty development opportunities throughout the academic year. The mostintensive CFE offering is the Master Teacher Program, which is a two-year program consistingof teaching-related classes and a required capstone project. To graduate, faculty members mustcomplete a