customers. At the junior level, students continue to expand upon their EM through project-based learning in multiple discipline-specific courses. Leadership, teamwork, and ethics are alsoexplored in an interdisciplinary, active and collaborative learning- based course. Finally, thisentrepreneurial thread culminates in the senior capstone experience in which students apply theirengineering skill set while exercising their EM in a year-long, real-world design project.This paper describes the work done to determine the effect of the EM-focused engineeringcurriculum sequence on developing the entrepreneurially-minded engineer. While multiplemethods were used to assess EM in a sample of undergraduate students, the bulk of this workfocuses on the data
engineering in 46 episodes of approximately 10 minuteseach. Over the course of the series, the origin of each branch of engineering was discussed,followed by discussion of core concepts of conservation, thermodynamics, fluid dynamics, heatand mass transfer, materials, statics, safety and ethics. The series then described applications ofthe different engineering fields, including robotics, genetic engineering, and signal processing, aswell as specific extensions of core engineering fields, such as transportation and geotechnicalengineering. The series concluded with an explanation of engineering design, careers inengineering, and the future problems to be solved. The authors of this paper were part of the collaboration in the development and
climate change. The TEST tool is introduced to facilitatestudent comprehension of thermodynamic analyses of these cycles and the constituent processes.While students continue to struggle with solving problems related to thermodynamic cycles,practicing with the TEST software alleviates some of the difficulty with the progress of the course.The ABET outcomes related to ethical and professional responsibilities and the impact ofengineering solutions in global, economic, environmental, and societal contexts are stronglyaligned to the course content. Relevance of Kigali and Paris accords, and the preceding Kyoto andMontreal protocols are also highlighted in the context of the course.The paper will provide an overview of the course and the project work
2 4.08 environmental, social, political, ethical, health and safety, manufacturability, and sustainabilityD. An ability to function on 20 27 9 1 2 4.05 multidisciplinary teamsE. An ability to identify, formulate, 23 29 5 1 4.28 and solve engineering problemsF. An understanding of professional 14 20 16 7 1 3.67 and ethical responsibilityG. An ability to communicate 22 21 11 3 1 4.03 effectivelyH. The broad education necessary to understand the impact
was held on the Carnegie Mellon University campus on December 2ndand 3rd, 2019. The objective of the two-day AI+STEM workshop was to bring together expertsand non-experts in the fields of AI and STEM education to discuss ways that industry, academia,and government could work better together to i) explore how the field of STEM education couldpotentially benefit from AI advancements, ii) propose education and knowledge acquisitionstrategies for the 21st century job landscape that will require lifelong learning and possibly causeentire shifts in expertise (potentially as a result of the very same AI technologies that couldenhance STEM education) and iii) engage with policy and decision makers in order to ensurethat ethical guidelines are in
one Other Disciplines exam. The NCEES has guides listingknowledge areas related to each discipline and a range of the number of questions that eachknowledge area may have on the exam. We developed this review course for the Mechanicalexam, although the structure is easily applicable to the other discipline-specific or OtherDiscipline exams. The knowledge areas for the Mechanical exam include Mathematics;Probability and Statistics; Computational Tools; Ethics and Professional Practice; EngineeringEconomics; Electricity and Magnetism; Statics; Dynamics, Kinematics and Vibrations;Mechanics of Materials; Material Properties and Processing; Fluid Mechanics; Thermodynamics;Heat Transfer; Measurements, Instrumentation and Controls; and Mechanical
. Dating back to the 1960s, researchershave explored the theoretical characterization of intercultural competence and the effectivenessof varying classroom practices [24]. More recently, various researchers have explored theefficacy of CEL and research immersion experiences. Research shows that teachers learn tonavigate complex, intercultural encounters through challenging CEL experiences promoting,“reflective, critical and ethical practices” [25].Since international engineering CEL has the potential benefit to both increase interculturalawareness, while also demonstrating engineering as a career that helps humanity, engagingteachers in this type of experience may prepare them to encourage and inspire their students,particularly females and other
ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies [1].In addition to the student outcomes, ABET’s program
-definedtechnicalandnon- technicalenvironments;andanabilityto identifyanduseappropriatetechnical literature Ethical, Social, Global, and Professional Criterion 5, Curriculum: curriculum must Development includetopicsrelatedtoprofessional responsibilities,ethicalresponsibilities, respectfordiversity,andqualityand continuousimprovementThe desired skills developed by the two-semester senior design sequence and listed in Table
accredited programs to follow the student outcome criteria.Students in CAC accredited programs must satisfy outcome criteria by having the ability to: 1. Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions; 2. Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program’s discipline; 3. Communicate effectively in a variety of professional contexts; 4. Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles; 5. Function effectively as a member or leader of a team engaged in activities appropriate to the
engineering education, students should have aclear understanding that the nature of their job is directly affecting the environment and theirpractices are governed by the code of ethics, which calls on sustainable development. How weteach or train students to develop their engineering skills, becomes an essential tool to nurturesustainability in their future practice, which was recognized as a pressing issue for educators [1]-[3]. Promoting sustainability as part of everyday practice could establish the missing link toenhance environmental attitudes of engineering students [4], [5].Many empirical studies reported that environmental education, either as a semester course or as asummer program, not only improves knowledge and awareness of environmental
all tests in the subjects of mathematics, probability and statistics, ethics and professionalpractice, and engineering economics [5]. Figure 1 shows a timeline which summarizes the majorchanges to the FE exam.The computer-based FE exam is administered through Pearson Vue test centers (during fourtesting windows: Jan-Feb, Apr-May, Jul-Aug, Oct-Nov), which maintains hundreds of NCEES-approved test centers both in the U.S. and at international locations [5]. Starting in 2017, thecomputer-based FE introduced a new testing component called alternative item types (AITs),which are questions other than traditional multiple-choice questions [11]. In 2018, theexamination fee was reduced from $225 to $175 [5].The only reference material that may be used
industrial management, financial management, computer technology, and environmental technology, as well as leading seminars in the university’s general education program. Prior to academia, Mr. Hilgarth was employed as as engineer in the aerospace industry in laboratory and flight test development, facilities management, and as a manager in quality assurance. He has contributed papers on management, ground-test laboratory and flight test facilities, and ethics to several technical and professional organizations. In education, he has served as a consultant and curriculum developer to the Ohio Board of Higher Education and the Ohio Department of Education. He holds an M.S. in engineering management from the Missouri
-learning community where students learned about and practice sustainability. Bielefeldt is also a licensed P.E. Professor Bielefeldt’s research interests in en- gineering education include service-learning, sustainable engineering, social responsibility, ethics, and diversity. American c Society for Engineering Education, 2020 Unconscious Bias in Peer Ratings of International Students’ Contributions to First-Year Design Projects?AbstractPeer ratings are often used to help award individual grades from team projects. It is thereforeimportant to understand the extent to which these peer ratings may be influenced by unconsciousor implicit bias
glance, one mayassume that factors such as student aptitude (understanding engineering concepts) and work ethic(study and preparation skills) are the leading contributors to student attrition. However, the vastmajority of engineering students, whether they are aware of it or not, do certainly have the requiredaptitude to succeed (apparent in the fact that they met the engineering school admission criteria),and work ethic is a characteristic that all can attain (if they do not already have it). While thesepotential barriers of aptitude and work ethic surely play a role in effecting retention, modernresearch has shown that there are other individual constructs that not only play a very influentialrole in retention, but are even more meaningful
changes to the language and definitions pertaining to all Criteria heavily influenced the development ofPerformance Indicators and their subsequent Barometric Assessments. The most challenging aspects of this aredescribed below.The first is the definition, and rather inclusive aspects, of Engineering Design. The legacy student outcome (c) requiredthat engineering design, “meet desired needs within realistic constraints such as economic, environmental, social,political, ethical, health and safety, manufacturability, and sustainability”. The use of the term “such as” as adeterminer indicates that only a subset of need and constraints is required. The new Student Outcome states,“engineering design solutions must meet specified needs with
ethical aspects of engineering design and practice, including Sci- ence, Technology, and Contemporary Issues; Technology and the Frankenstein Myth; The LEGO Course: c American Society for Engineering Education, 2020 Paper ID #30310Engineering Design and Values; STS and Engineering Practice; and The Engineer, Ethics, and Profes-sional Responsibility. c American Society for Engineering Education, 2020 Communication across Divisions: Trends Emerging from the 2019 Annual Conference of ASEE and Some Possibilities for Strategic ActionAbstractThis paper extends
be able to identify what solutions it truly needs. If we are [u]nstable in how we are connected to ourselves and those immediately around us, it will be virtually impossible for us to do it to the entire world. These lessons of understanding human experiences from different perspectives, empathizing with them and considering them in the decisions we make is what will set us apart as conscious and ethical engineers that add positive value to the world.Perhaps the strongest statement about the need for empathy and reflection in engineering camefrom a student who asserted that these were the tools that could prevent engineering fromperpetuating deeply entrenched systems of discrimination in society
spiral, waterfall and agile. (Process) FDBK Demonstrate ability to make improvements after receiving constructive feedback. (Feedback) ETH Demonstrate an understanding of professional ethics appropriate to the use or development of computer science artifacts, and social impact of computer technology. (Ethics) ISPEC Demonstrate an understanding of intellectual property laws and ethics, software licenses, and commensurate rights. Demonstrate an understanding of security, privacy, and other ethical or legal issues, that arise in the context of computing. (Intellectual Property and Security) WRITE Write a clear document which meets the needs of the intended reader(s). (Writing) SPEAK
thinking in the reading and analysis of research literature. 6. Students will be able to identify and define professional and ethical norms that pertain to the writing of a literature review.The CT template below is used in Course 1 to guide students in critical reading of a single paper.It is used as a basis for several intermediate writing assignments that guide students as they findand evaluate literature [6]. An initial assignment is to fill out Part I of the template; that isstudents must first state the broad scientific, technological, or societal drivers and significance oftheir work. Next they articulate the specific goals, objectives, or research question to beaddressed in their work. Typically two or three rewrites of Part I
definition orscope of a wicked problem. Wicked problems exist in a dynamic knot of social, policy,economic, moral, ethical and technical dimensions. Attempts to solve wicked problemsfrequently yield unintended outcomes that render the solution unsatisfactory or incomplete.Environmental engineering practice addresses challenges more like wicked problems than tameproblems. Accordingly, teaching principles of environmental engineering “in context” of the realsocial, political, economic and technical dimensions that exist with the challenges professionalsface in practice provides students with an opportunity to develop critical thinking skillsnecessary to be successful in their careers. Assessment of teaching in-context, and examplesfrom different STEM
theseparticipants, 71% have presented their work at national professional society meetings, and two ofthem have become co-authors on three papers. Of the 17 who have since graduated, 13 are eitherin engineering graduate school or in STEM industry positions.REU students took part in an introductory bootcamp on the fundamentals of systems modelingand applied biostatistics and had multiple opportunities to present their research progressthroughout the summer to experts in the field. They also received professional developmenttraining through workshops and seminars on research ethics, technical communication, andlaunching careers in systems bioengineering. Post-REU surveys of participants revealed that100% of respondents rated their overall experience with the
education, with a focus on socioeconomic class and social responsibility. She is currently completing a book manuscript on the intersection of engineering and corporate social responsibility. She is the author of Mining Coal and Undermining Gender: Rhythms of Work and Family in the American West (Rutgers University Press, 2014), which was funded by the National Science Foundation and National Endowment for the Humanities. In 2016 the National Academy of Engineering recognized her Corporate Social Re- sponsibility course as a national exemplar in teaching engineering ethics. Professor Smith holds a PhD in Anthropology and a certificate in Women’s Studies from the University of Michigan and bachelor’s degrees in
Executive Committee and a Program Evaluator for both computer engineering and computer science. Estell is well-known for his significant contributions on streamlining student outcomes assess- ment processes, and has been an invited presenter at the ABET Symposium on multiple occasions. Estell is also a founding member and current Vice President of The Pledge of the Computing Professional, an organization dedicated to the promotion of ethics in the computing professions. Estell is Professor of Computer Engineering and Computer Science at Ohio Northern University, where he currently teaches first-year programming and user interface design courses, and also serves on the col- lege’s Capstone Design Committee. Much of his
domain area was developed (see Table 3). Table 3: Domain Areas (EVT, EI, & Sense of Belonging) Model 1st Domain Area (Initial code) 2nd Domain Area Expectancy-Value Theory Competence Belief Intellectual Development Engineering Identity Attainment Value Social Persuasion Sense of Belonging Interest (EVT) Mastery Experience Utility Value Attention to Human Ethical values Recognition Personal Integrity
encompasses philosophy of technology and of engineering and engineering education. I am now studying grassroots engineering (GE) and so- cial/solidarity technology (ST), as well as engineering education, focusing, on one hand, on the ethical- political, aesthetics, and epistemic aspects that both characterize and make GE and ST possible, and, on the other hand, on the challenges the engineering education must face in order to train/develop the capa- bilities or skills engineers must possess so to be able of doing GE and producing ST. The work I currently develop at ITA is related to the conception and institutionalization of a minor in engaged engineering. c American Society for Engineering
-7] where engineering design process was followed for qualityassurance. The design process is introduced and is taught through its components. Students makeuse of the design process to define and solve real-world engineering problems. Skills developedand used in the class include describing the design process for both product and systemdevelopment, writing design specifications for problems, developing a project plan, applyingconcept generation, applying decision making tools, use of the Quality Function Deploymentprocess, recognizing and discussing ethical issues, and developing an understanding of the roleof professional codes and standards and their impact on product safety, quality, and reliability.The students are required to perform
]. ASCE points to the uncertain tomorrow where engineersmust work together to create innovative solutions to climate change, technological advances inalternative energy, autonomous vehicles, smart cities, advanced construction techniques andmaterials, and new approaches to governance. These tremendous challenges are not designed,built, operated, and maintained in a vacuum. They require experts from a myriad of disciplines tocollaborate, communicate effectively, and make well-informed, ethical decisions in order to besuccessful. The American Society of Mechanical Engineers (ASME) also recognizes theimportance of collaboration between disciplines as it “promotes the art, science, and practice ofmultidisciplinary engineering and allied sciences
includes a focus on student teamwork, a greaterconsideration of social factors, improved communication with diverse constituents, andreflection on ethical decision making and problem solving. This vision of engineering willproduce graduates who can address a wider range of societal problems bringing new perspectivesto traditional areas.Summary of Curriculum DevelopmentOne of the goals of our NSF RED grant is to: “Develop the foundation of a revised engineeringcanon and empower faculty to develop and deliver a professional spine that prepareschangemaking engineers.” Efforts to address this goal include creating new classes anddeveloping lectures, active-learning exercises and assignments that contextualize engineeringthrough social justice
study with this being “What are the 10-20 most importanttopics in [your discipline] and how these are related?”.MethodologyAt the first week of the term, in the first tutorial session of the class, students enrolled in thecourse CHBE 220 were presented with an exercise to use concept mapping to outline the 10-20most important concepts in chemical and biological engineering and map out how these conceptswere related. Students in the class were first presented with a consent form approved by theuniversity’s Research Ethics Board explaining the study. All students in the course were asked tocomplete concept maps and these were marked only for completion. Concept map data fromstudents not opting in to the study was not used for further analysis