Biomedical Engineering include Innovation and Design in Medicine, Design Seminar, and Introduction to Rehabilitation Engineering. He also teaches medical students through the Medical Innovation and Human Centered Design Program in the School of Medicine. Mr. Chen’s research interests include design in pediatrics and surgery. c American Society for Engineering Education, 2018 Patient Centered Design in Undergraduate Biomedical EngineeringAbstractDesign in engineering is not only a core competency for students but is also a useful frameworkfor collaborating across the university. In particular, contextualized patient-centered design basedupon immersion and deep empathy are increasingly important skills
is also active in ophthalmology research - having co-formed and currently serving as a Technical Director for the ophthalmology-based medical device design lab (ORBITLab) at the UIC Innovation Center. Anthony holds a B.S. and Ph.D. in Bioengi- neering.Dr. Miiri Kotche, University of Illinois, Chicago Miiri Kotche is a Clinical Associate Professor of Bioengineering at the University of Illinois at Chicago, and currently serves as Director of the Medical Accelerator for Devices Laboratory (MAD Lab) at the UIC Innovation Center. Prior to joining the faculty at UIC, she worked in new product development for medical devices, telecommunications and consumer products. She co-teaches both bioengineering
best practice: effective implementation of change in patients’ care". Lancet 2003;362:1225–30.[13] Stone VI, Lane JP. "Modeling technology innovation: How science, engineering, and industry methods can combine to generate beneficial socioeconomic impacts". Implement Sci 2012;7:44.[14] Desideri L, Bizzarri M, Bitelli C, Roentgen U, Gelderblom G-J, de Witte L. "Implementing a routine outcome assessment procedure to evaluate the quality of assistive technology service delivery for children with physical or multiple disabilities: Perceived effectiveness, social cost, and user satisfaction". Assist Technol 2016;28:30–40.[15] Chau T, Moghimi S, Popovic MR. "Knowledge Translation in Rehabilitation Engineering
5: Curriculum., Retrieved from http://www.abet.org/accreditation/accreditation-criteria/criteria- for-accrediting-engineering-programs-2016-2017/#curriculum.[2] C. Dym, A. Agogino, O. Eris, D. Frey, and L. Leifer, “Engineering design thinking, teaching and learning,” J. Eng. Educ., vol. 86, pp. 103-120, 2005.[3] R. Allen, S. Acharya, C. Jancuk and A. Shoukas, “Sharing best practices in teaching biomedical engineering design,” Annals of Biomed. Eng., vol. 41, pp. 1869-1879, 2013.[4] R. Mertz, “A capstone design course [electrical engineering],” IEEE Trans. Educ., vol. 40, pp. 41-45, 1997.[5] R. Miller and B. Olds, “A model curriculum for a capstone course in multidisciplinary engineering design,” J. Eng. Educ., vol. 83, pp
Paper ID #23255Modeling and Design: a Hands-on Introduction to Biomedical EngineeringDr. Eileen Haase PhD, Johns Hopkins University Eileen Haase is the Director of Undergraduate Studies and a Senior Lecturer in Biomedical Engineering at Johns Hopkins University. She is also chair of the Johns Hopkins Applied Biomedical Engineering graduate program for Engineering Professionals. She received her BS in ESM from Virginia Tech, and her MS EE and PhD in Biomedical Engineering from Johns Hopkins. c American Society for Engineering Education, 2018 Modeling and Design: A hands-on Introduction to Biomedical
studentparticipation, and the impacts those activities had on the traditional lecture sessions. 2. Introduction In the past two decades, the extensive research on teaching methods has provided an increasingamount of insight in the most effective active teaching and learning processes1,2. The outcomes ofdifferent studies vary, but a major consensus is that active learning works3: at worst, active learningdoesn’t harm students’ outcomes; at best, it doubles students’ retention4. Consequently, activelearning was incorporated in fields such as STEM,5,6 history and political sciences,7 and business8.Each field, however, focused on different active elements: business school courses are traditionallyknown as mostly case-study based, while engineering courses
Paper ID #21504Exploring Biomedical Engineering Students’ Self-Raised Motivations for En-gaging in Instructional DesignJacqueline Handley, University of Michigan Jacqueline Handley is a graduate student at the University of Michigan, in Science Education. Her back- ground is in Material Science and Engineering, with an emphasis on Biomaterials Design. She is inter- ested in, broadly, how best bridge engineering practice and education. More specifically, she is interested in access to and inclusion in engineering at the K-12 level.Dr. Aileen Huang-Saad, University of Michigan Aileen is faculty in Engineering Education and
-Saad has a fourteen- year history of bringing about organizational change in higher educa- tion, leveraging evidence-based practices at University of Michigan. She created the U-M BME graduate design program, co-founded the U-M College of Engineering Center for Entrepreneurship, launched the U-M National Science Foundation (NSF) I-Corps Node, and developed the U-M BME Instructional In- cubator. She is a canonical instructor for both the NSF and National Institute of Health (NIH) I-Corps Programs. Dr. Huang- Saad has received numerous awards for her teaching and student advising, includ- ing the 1938E College of Engineering Award, the Thomas M. Sawyer, Jr. Teaching Award, the U-M ASEE Outstanding Professor Award, the
for Medical and Biological Engineering, and the American College of Clinical Engineering.Dr. Icaro Dos Santos Dos Santos, Milwaukee School of Engineering c American Society for Engineering Education, 2018Work-In-Progress: Streamlining Biomedical Engineering Design ProcessThe Accreditation Board for Engineering Technology (ABET) Criterion 5 states that an ABET-accredited undergraduate engineering program must incorporate a capstone design process tobetter prepare its graduates for various engineering careers [1]. The most common pedagogicalapproaches to teaching design focus on a Problem-Based Learning and are centered around aspecific problem to be addressed, and include general capstone courses covering
Paper ID #22986An Engineering Design-Oriented First Year Biomedical Engineering Cur-riculumDr. Kay C. Dee, Rose-Hulman Institute of Technology Kay C. Dee received a B.S. degree in chemical engineering from Carnegie Mellon University, and M.Eng. and Ph.D. degrees in biomedical engineering from Rensselaer Polytechnic Institute. After completing her graduate work, Kay C joined the Department of Biomedical Engineering at Tulane University in New Orleans, Louisiana. She later joined the faculty at Rose-Hulman Institute of Technology. She served as the founding Director of the Rose-Hulman Center for the Practice and Scholarship
importance ofproviding undergraduate students open-ended, loosely defined projects, and allowing projectteams to assume responsibility for design and innovation.2. INTRODUCTIONEngineers, clinicians and patients often struggle to find balance between innovative technologyand the human side of medical care. Graduate level educational programs dedicated to teachingbiomedical innovation have seen significant growth in the last decade [1-7]. In addition, the fieldof biomedical engineering has seen a dramatic escalation in activity over the past 20 yearsleading to innovative medical devices and procedures. Due to the multidisciplinary characteristicof the field, biomedical engineering has a diverse research impact, often serving as a bridgebuilder between
from different fields and countries. Dr. Gulacar has developed and organized workshops about implementation of social constructivist methods and effective use of technological tools in science classrooms.Dr. Jennifer H. Choi, University of California, Davis Jennifer Choi is currently a Lecturer with potential for security of employment (LPSOE) in the Depart- ment of Biomedical Engineering (BME) at UC Davis. In addition to teaching core undergraduate courses, Jennifer is aimed at integrating engineering design principles and hands-on experiences throughout the curriculum, and playing an active role in the senior design course. She has interests in engineering educa- tion, curricular innovation, as well as impacting
specifically use the inductive teaching method, project-based learning (PBL), insophomore (200-) and junior (300-) level BME laboratory courses. PBL is built around student-centered instruction, and its hallmark is a concrete end-product that has been designed throughiterative refinement. Inclusion of four, progressively more challenging design projects into thesophomore and junior year courses provides students opportunity to practice iterative refinementprior to a capstone experience. Further, the literature supports that constructivist principlesground PBL experiences in context-specific learning, active engagement, and sharing ofknowledge [8]-[10], all of which we feel are necessary for successful engineering project work.When designed well, PBL
guide students towards crafting stronger, morepersuasive resumes tailored specifically for their post-graduation goals in an objective manner[1].Literature ReviewMany studies and reviews display the importance of teaching writing skills to developingengineers [5]–[8]. The ability to communicate clearly and concisely, especially within theconfines of a one-page resume, displays writing skill and professionalism. Many of these articlesalso recommend practice exercises for strengthening qualitative resume writing skills and theirimpact on student writing quality. For example, addition of written assignments to upper-levelengineering courses and learner-centered instructional strategies have been shown to increasemultiple aspects of a student’s
biomedical engineering students’ preferences for class structure and instructionstyle. We also discuss unique attributes of the study abroad and/or on-campus setting, whichacted in a cooperative or conflicting manner with the challenge-based instruction paradigm.2. Literature Review:2.1 Resistance to Change in College Engineering Education: Focusing on the influence ofeducation, learning, and social-behavioral research on engineering teaching practices, a recentsurvey by Borrego et al. demonstrated that faculty awareness far outpaces adoption of knownstudent-centered practices. For example, while 82% of engineering deans were aware of student-active pedagogies, only 71% claim that department faculty members have adopted such practices.Even more
teaching in the University of Illinois at Chicago’s DPT program in 2010. She became a board certified pediatric clinical specialist in 2012, completed her Assistive Technology Certificate from UIC in 2015, and earned her PhD in Disability Studies from UIC in 2016. She joined the University of Washington’s Department of Mechanical Engineering as a postdoctoral researcher in September of 2016. Heather has a special in- terest in user-centered design and participatory research, and has been a lab member of the GoBabyGo program, which creates custom safety and accessibility modifications to commercially available battery powered toy ride-on cars for children with disabilities, since 2012. Heather’s research focuses on inves
Education and Biomedical Engineering. Previously, Aileen was the Associate Director for Academics in the Center for Entrepreneurship and was responsible for building the Program in Entrepreneurship for UM undergraduates, co-developing the masters level entrepreneur- ship program, and launching the biomedical engineering graduate design program. Aileen has received a number of awards for her teaching, including the Thomas M. Sawyer, Jr. Teaching Award, the UM ASEE Outstanding Professor Award and the Teaching with Sakai Innovation Award. Prior to joining the University of Michigan faculty, she worked in the private sector gaining experience in biotech, defense, and medical device testing at large companies and start-ups
Engineering at The University of Texas at Austin as well as Adjunct Professor of Imaging Physics at The University of Texas MD Anderson Cancer Center. Dr. Markey is a 1994 graduate of the Illinois Mathematics and Science Academy. She has a B.S. in computational biology (1998). Dr. Markey earned her Ph.D. in biomedical engineering (2002), along with a certificate in bioinformatics, from Duke University. Dr. Markey has been recognized for excellence in research and teaching with awards from organizations such as the American Medical Informatics Association, the American Society for Engineering Education, the American Cancer Society, and the Society for Women’s Health Research. She is a Fellow of both the American Association
Engineering at Michigan. Cassie received a B.A. in Engineering Sciences at Wartburg College (Waverly, IA) and a M.S. in BME from the University of Michigan (Ann Arbor).Annie AnMeng Wang, University of MichiganDr. Aileen Huang-Saad, Northeastern University In February 2021 Dr. Huang-Saad joined the Bioengineering faculty at Northeastern University and be- came the Director of Life Sciences and Engineering Programs at The Roux Institute (Portland, Maine). Dr. Huang-Saad has a fourteen- year history of bringing about organizational change in higher educa- tion, leveraging evidence-based practices at University of Michigan. She created the U-M BME graduate design program, co-founded the U-M College of Engineering Center for
a B.A. in Engineering Sciences at Wartburg College (Waverly, IA).Dr. Aileen Huang-Saad, University of Michigan Aileen is faculty in Engineering Education and Biomedical Engineering. Previously, Aileen was the Associate Director for Academics in the Center for Entrepreneurship and was responsible for building the Program in Entrepreneurship for UM undergraduates, co-developing the masters level entrepreneur- ship program, and launching the biomedical engineering graduate design program. Aileen has received a number of awards for her teaching, including the Thomas M. Sawyer, Jr. Teaching Award, the UM ASEE Outstanding Professor Award and the Teaching with Sakai Innovation Award. Prior to joining the University
University (Fort Collins, CO, USA). She has experience working as a graduate teaching assistant for computer aided engineering, biomedical engi- neering capstone design, and biomedical engineering introductory classes. Nicole’s engineering education interests include active learning, metacognitive thinking, and the use of technology platforms. Her doc- toral research is focused on the material properties of spinal cord tissues to contribute to the understanding and treatment of spinal cord injuries.Jasmine Erin Nejad, Colorado State University Jasmine Nejad is a PhD student in the Biomedical Engineering program at Colorado State University (CSU). She completed her B.S. in Biochemistry and M.S. in Biomedical Engineering at
Paper ID #29283Understanding Identity among Biomedical Engineering Students andProfessionalsMr. Emmett Jacob SpringerDr. Aileen Huang-Saad, University of Michigan Aileen is faculty in Engineering Education and Biomedical Engineering. Previously, Aileen was the Associate Director for Academics in the Center for Entrepreneurship and was responsible for building the Program in Entrepreneurship for UM undergraduates, co-developing the masters level entrepreneur- ship program, and launching the biomedical engineering graduate design program. Aileen has received a number of awards for her teaching, including the Thomas M. Sawyer
Learning: Research and Practice, 15:2, pp.126-138, 2018.[9] R.M. Felder and R. Brent (2017) Learner-Centered Teaching: How and Why? LearningAbstracts (League for Innovation in the Community College), 20(5), May 2017[10] P. G. Koles, A. Stolfi, N. J. Borges, S. Nelson, and D. X. Parmelee, “The impact of team-based learning on medical students' academic performance.,” Acad Med, vol. 85, no. 11, pp.1739–1745, Nov. 2010.[11] M. L. Epstein and G. M. Brosvic, “Students prefer the immediate feedback assessmenttechnique,” Psychol Rep, vol. 90, no. 3, pp. 1136–1138, Jun. 2002.[12] E. Haase, B.N. Phan, and H.R. Goldberg (2017), Molecules and Cells: Team-based andMulti-modal Learning Improves Comprehension and Increases Content Retention, 2017 ASEEAnnual