Graded Homework and Hello to Homework QuizzesAbstractIn higher education, an ongoing issue is assessment of student learning. We wonder how toassess, how often to assess, why we are assessing, and even how are we, as faculty, going tohandle all the grading and management of assessment. Engineering students are frequentlyassessed on homework, quizzes, projects, and exams, but given today’s connected world,students may be copying or sharing homework solutions. Often, they do not realize how workingproblems is integral to their success in a class as well as to their understanding of engineering. Inaddition, across the disciplines we are more aware of how students study and that they often donot select the most productive
directed at theAviation Administration degree program. The courses within the program were found adequatein providing technical aspects and managerial concepts of airports. However, the faculty’sassessment led to an agreement that students may better appreciate technical and managerialairport concepts if they had a better understanding of the airplane itself and the airspace theynavigate that surrounds airports. At the time of this discussion, the professional pilot studentswere not targeted since their curriculum already included extensive coverage of these concepts. Itwas decided that these ideas would be brought up at the next Aviation Industry Advisory Boardmeeting.OpportunityIn summer 2017, an unusual opportunity presented itself in the
which each student outcome is being attained by the students and provide feedback to course instructors when appropriate. Rationale: This evaluation is heart of the assessment of student attainment of the SOs and Aerospace Engineering program criteria. These faculty members provide an independent assessment and evaluation of the degree of attainment of each SO and provide feedback for course improvement and curriculum change. This assessment and the resulting feedback to the faculty are essential for curriculum improvement.Work Review (WR) Assessment ProcessFor the Work Review assessment, the instructor is required to submit copies of the work of all ofthe students in the class on an assignment that targets the SO selected for the
efforts to form an integrated software engineering team. The number of students in the classnecessitated the use of software development teams, which shared the same set of hardwaresystems. Having two teams also allowed the use of an end of semester competition. Theinstructor, Professor Lyle N. Long, took special training in software engineering to prepare toteach the courses; he is now a Certified Software Development Professional.The objectives of the course are to provide hands-on experience in software engineering, and tosimulate the real working environment of a large company using team work with an emphasis oncommunication and collaboration skills. “Collaboration is a process that crosses time andcultures. Increasingly, engineering
astrong electric field to create thrust. The HET is used for many modern space applications, fromstation-keeping on small satellites to long-term travel to faraway asteroids.Electric propulsion, and specifically the HET, integrates many concepts that are fundamental in anundergraduate education such as electricity and magnetism (E&M), material properties, thermalanalysis, and laboratory experimentation. However, the HET is rarely studied below the graduatelevel. As such, we present a path of feasibility for an undergraduate electric propulsion projectbuilding a small, low-power HET, both as a novel vehicle for engaging with introductory physicsconcepts and as a case study of an advanced self-directed project at the undergraduate level.In this
Pedagogical Issues. In: AIAA, editor. Aerospace Science Meeting and Exhibit. Volume 47. Orlando: AIAA; 2009. p 1-8.6. Prusak Z. Challenges to Future Engineering Professionals - How to Prepare Students to Face Them. 1998; Seattle, WA. American Society for Engineering Eduation.7. Lema L, Baumann P, Prusak Z. In-common Methodology for Objective- and Outcome-based Programs Assessment. 2005; Portland, OR. American Society for Engineering Education.8. Prusak Z. Application of QFD in Engineering Education: Assurance of Learning Outcomes Fulfillment. 2007; Williamsburg, VA. QFD Institute.9. Al-Masoud N, Baumann P. Development and Implementation of an Integrated Outcom-based Assessment Plan for a New Engineering
AC 2011-1151: SIGNIFICANCE OF STUDENT-BUILT SPACECRAFT DE-SIGN PROGRAMS IT’S IMPACT ON SPACECRAFT ENGINEERING ED-UCATION OVER LAST TEN YEARSMichael Swartwout, Saint Louis University, Parks College of Engineering, Aviation and Technology Dr. Michael Swartwout joined the Saint Louis University faculty as of 2009 as an Assistant professor in the Department of Aerospace & Mechanical Engineering at Parks. He worked at Washington University in Saint Louis previously from 2000 to 2009. Beginning his education in Aerospace Engineering earning both his Bachelor and Master of Science with the University of Illinois, he went on to achieve his Doc- torate with Stanford University in Aeronautics & Astronautics in 2000. He
full-scale flight test engineering curriculum. A ‘virtual’ flight test can complement the learning ofvarious aspects of aircraft performance, and stability & control. Planning, managing, executingand analyzing data from such a virtual flight test mission provides additional opportunities togroom engineering students in these important skills.This paper describes the integration of ‘virtual flight testing’ in an undergraduate AircraftStability & Control course using commercial off-the shelf software and hardware in animmersive flight simulation environment. The students conduct ‘virtual flight tests’ to determinevarious parameters of an aircraft and compare their experimental results with the theory. Thestudents work in teams consisting
, ACL. And PBL pedagogical techniques as “students” in the workshop Experience examples of entrepreneurial mindset course integration Analyze unfamiliar situations and open-ended problems using various methods to define the “true” problem statements Interact as part of an interdisciplinary team with members from multiple institutions and backgroundsThe workshop was made up of 23 faculty representing different engineering disciplines from 11different universities. While the author has over 28 years of experience in ABET accreditedengineering programs, there were many new pedagogical techniques that the workshopparticipants experienced in individual and group activities over the three
design provided anopportunity to see the impact of a controlled intervention on students (in a typical largeuniversity environment) who have had three years of training predominantly under the deductivelearning model where emphasis is often not placed on the application of theory to real worldproblems.The Experiment In the live simulation, the students experienced being an aircraft design engineer for afictitious aircraft company called Ace Aero. The students used a combination of electronic toolsand real world role playing in order to simulate the aircraft designer experience. These realworld industry level design tools included the computer CAD tool CATIA by Dassault Systems,the synthesis tool ModelCenter® by Phoenix Integration, and
whose students took these international assessments. Nationally, this achievementgap is mirrored in the lower performance of African-Americans and Hispanics students incomparison to White students as seen in both the PISA Report2 and national assessments3. Thereare several reasons cited in literature4-6 for this achievement gap. Some of these reasons are socio-economic status, strength of curriculum and disparity between school districts. In addition to thesestructural challenges, student engagement and motivation play an important role in learning. Thepedagogical approach in the classroom has a strong impact on students’ engagement with thelearning materials. Students’ cognitive engagement with the learning materials increases if theyrecognize
case study provides an in-depth study of the challenges andmilestones faced by the evaluation team. One challenge was understanding the uniqueengineering design-based curriculum. Another challenge was exploring the impact of a pureinquiry-based teaching program. One key milestone reached was creating a participatoryenvironment for the program evaluation. The result was an evaluation regime that was useful tothe rocket program stakeholders. Engineering an Evaluation for a Growing Rocket Program: Lessons LearnedIntroduction Perennially, educators, industrialists, social commentators, and politicians call forscience, technology, engineering, and mathematics (STEM) instruction that matches anincreasingly multifaceted global economy
within the framework of an experimentalaerodynamics curriculum is presented in Ref. [1]. An iterative formulation was used to developthe program as well as supporting classes. Consequently, AE 411 was created as a technical elective to give undergraduate students theopportunity to experience the gamete of issues commonly seen in an open ended problem; clearidentification of the problem, potential methods of solution, selection and implementation of asolution method and evaluation of results. The problem could range from the design ofequipment to investigating an aerodynamic device, etc. Additionally, the use of numericalmethods for experimental validation was also emphasized, where applicable. AE 411 wasdeveloped as a project based follow on
effective way of enhancingcomprehension and retention of lessons1,2,3 in the undergraduate curriculum. Coyle4 discusses avertically integrated curricular experience in electrical engineering, constructed from a projectrunning through a sequence of courses. Ohland5 discusses multiple approaches tomultidisciplinary design experiences in the undergraduate curriculum. Devgan6 discusses how Page 23.1037.2research experiences are used to meet ABET EC2000 criteria. Pionke7 describes using a NASAstudent competition as an intense multidisciplinary project experience. While the experiencediscussed in this paper was not designed as a curricular experience, it
-onapplication of concepts learned in an academic setting is key to deep understanding, this courseserves as a capstone where concepts previously taught in several classes are integrated to givestudents an overarching view of aircraft operation, putting the theory students are taught inprevious courses into practice. In order to facilitate a learning environment and mitigate safetyissues associated with using real aircraft, two modern high performance aircraft models in theVirginia Tech Flight Simulation Laboratory are used instead of test aircraft. This allows foraccomplishment of targeted learning objectives, while alleviating operational costs, weatherconcerns, and liability and safety concerns. It also gives students the ability and opportunity
, analyze a model in computer-aided design software, use machine shop equipment forhardware manufacturing, or conduct an integrated system test for flight acceptance andqualification.3.3 End-to-end design cycleS3FL projects are designed to be more than paper studies or construction of simple prototypes.The S3FL projects attempt to expose students to the entire end-to-end design cycle, fromrequirements definitions to post-flight data evaluation. Students become involved at the initialstages of a project by interacting with principal investigators or equivalent customers andoutlining mission objectives and top-level requirements. Subsystem teams are responsible forperforming the trade studies and analyses to converge on a specific flight
Classroom Teaching Techniques – An Effectiveness Methodology for Aerospace Concepts?AbstractMost engineering courses require some level of work to be done by students using internet. Avast majority of material taught in classes is available online. Theoretically, a student could learnalmost everything they want from the online resources. In this research, a comparative study isdone between students learning and understanding when some basic aerospace concepts aretaught in a traditional lecture based classroom versus when students are told to look for the samematerial on the internet. The results indicate that, although all the material taught in theclassroom is available on the internet, students do not perform better when they
Professor, Electrical/Computer Engineering, UAF Earth & Planetary Remote Sensing, UAF Geophys- ical Institute Associate Director for Science & Education, Alaska Center for Unmanned Aircraft Systems Integration 2009-2012: Director, Air Force Research Laboratory Air Vehicles Directorate 2006-2009: Deputy Director, Air Force Office of Scientific Research 1999-2003: Deputy Head, USAF Academy De- partment of Astronautics 1992-1996: Assistant Professor, USAFA Department of Astronautics 3. PUB- LICATIONS 1. Cunningham, K., M. C. Hatfield, and R. Philemonoff, Unmanned Aircraft Systems in Alaskan Civil Research, 2014 Arctic Technology Conference, 2014 2. Hatfield, M. C., and J. G. Hawkins, Design of an Electronically
Paper ID #15656UAS Design in Active LearningDr. Michael C. Hatfield, University of Alaska, Fairbanks Michael C. Hatfield is an assistant professor in the Department of Electrical and Computer Engineering at the University of Alaska Fairbanks, and Associate Director for Science & Education, Alaska Center for Unmanned Aircraft Systems Integration. He earned a B.S. in electrical engineering from Ohio Northern University; an M.S. in electrical engineering from California State University Fresno, and a Ph.D. in Electrical/Aeronautical Engineering from the University of Alaska Fairbanks.Dr. John Monahan, University of Alaska
and experiential learning experiences. Integration of thesetechnologies added an additional dimension to the value of scientific inquiry and shows how toapply scientific knowledge, procedures and mathematics to solve real problems and improve theworld we live in. The curriculum supports the Next Generation Science Standards and containeda strong emphasis on math and science literacy for 21st century learners. Students participating inthe outreach program completed a total of thirty-six (36) to forty (40) hours of hands-onexperience.Hands-on learning was provided through the AEL, a state-of-the-art laboratory that featurescollaborative learning environment and equipped with hardware and software to supportcurriculum enhancement activities. The
and academic success[1], specially of students from underrepresented groups [2]-[5]. Identity is neither a monolithicconstruct nor its development is a one-dimensional process. An individual may have severalintersecting identities such as a personal identity (individual characteristics), social identity (groupcharacteristics, cultural characteristics), and professional identity [6]-[8]. The development ofprofessional identity has been studied in context of various professions such as medicine [8], healthcare [9], pharmacy [10], and higher education [11], [12]. One definition of professional identity is“internalization of the norms of the profession into the individual’s self-image . . . [and] theacquisition of the specific competence in
about 33% greater on AAO15 than AAO40, due to the higher pressure applied tothe AAO15 to reach an acceptable filling ratio. A reduction of was also appreciable after thecomposites were finished. This was due to nanocracks created by stress on the pore walls duringthe crystallization of the metal inside the pores.Student AssessmentThe first author felt that the overall experience of the summer research was very enjoyable. Helearned technical writing, presentation, and laboratory skills, which are not taught thoroughly inthe standard curriculum. The interactions with a faculty mentor, graduate students and otherundergraduate students from the host university and from other universities from all over US,who participated in the summer research
Paper ID #29520Student Paper: An Engineering Pedagogy for Developing PracticalKnowledge and Hands-On Skills Related to 5-Axis Milling and ComputerAided Aerospace Parts Manufacturing Using Current TechnologyMr. John Vincent Kronenberger, Oregon Institute of Technology John Kronenberger is a senior undergraduate student at the Oregon Institute of Technology dual majoring in Mechanical Engineering and Manufacturing Engineering Technology. Academic interests include CNC programming, 3D design and modeling, and the application of additive manufacturing technology.Dr. David E. Culler, Oregon Institute of Technology Dr. Culler has an
not new. However, applying thisold idea within the constraints of an engineering curriculum remains difficult. The difficulty is inbalancing the need for “training” with that for imparting new concepts in a fast-expanding field, Page 11.873.2within ever-tightening time constraints, to students who come in at the same age.BackgroundThe typical aerospace engineering curriculum of the 1970s through early 1980s required roughly205 quarter-credit-hours (136 semester hours). Fluid / aerodynamics, structures, propulsion andperformance were emphasized; aeroelasticity and design culminated the theoretical analysis andsynthesis respectively. Given
or full-time undergraduate students in Prescott. The topic of spacedebris was introduced in these classes and it was found that this field can serve as a veryelaborate example pool for applied orbital mechanics, mission planning, spacecraft design (busand payload), remote sensing and space surveillance, and classes in a traditional liberal artscurriculum such as history, policy, and law.Projects like the analysis of satellite fragmentations, interactive web based flux directionalitycalculations, and the long term effects of perturbations on a satellite’s orbit are a few exampleson how this important topic can be included in a university curriculum. Undergraduate studentshave been integrated into research projects in addition to the classes
(UAVs),commonly known as Drones, to spark student interest and provide an experiential learningopportunity (ELO) in science, technology, engineering, and mathematics (STEM). Drones,which have become a popular recreational tool among youth, are ideal platforms with enormousscientific value for engaging students in hands-on, inquiry-based learning to develop science andmath skills, thereby focusing on the importance of these skills to succeed in college. The DroneExploration Academy curriculum included at its core the drone design and build, sensor/payload,programming, and piloting to conduct a field-based scientific investigation. The learningactivities were carefully designed to meet the Next Generation Science Standards and the NorthCarolina
. Theinnovation in this project is developing approaches to teaching Flight Test Engineering inuniversities without experienced test pilots. We have enabled this by producing syllabi,procedural guidance, instrumentation requirements, budget and faculty competencies (andqualifications), and implementation issues. The project summary is found in Appendix G. Three upper-class projects are being readied for publication and will be available in early2010. The project teams will then move to documenting 3 additional projects by the summer of2011.Developing integrated learning experiences CDIO standard 3 speaks to the development of an integrated curriculum, and standard 7addresses integrated learning experiences. The project plan for the Aerospace Project
Engineering Edu- cation (ASEE) and conducts research in engineering education.Darius Fieschko, University of Wisconsin - Platteville c American Society for Engineering Education, 2020 PLC Training in First Year Electrical Engineering ProgramAbstractProgrammable Logic Controllers ( PLCs) have had a profound impact on industry and society atlarge. PLCs are an integral part of a wide variety of control systems, ranging from industrialmanufacturing to amusement park rides and filmmaking. Programming languages like ladderlogic allow technicians and engineers without formal programming experience to build anddebug complex automation systems much faster than if they needed to physically build arrays ofrelays and
often aconsequence of our reaction to failures1. Hazard analysis which relies on engineering practiceand judgment to identify, classify, and manage risk has continued to have an important role inforeseeing and preventing critical system failure2, 3 . Failure’s role in engineering; including itsvalue in design, design revisions and failure as a source of engineering judgment has beenstudied4, 5. The continued failure of important complex systems has led to assess the question asto how the systems fail despite everything thought to be necessary in the way of process beingdone6.Several engineering curriculums do offer courses based on either laboratories or case studies tounderstand the importance of failures in design as a teaching aid7, 8, 9, 10
financial implications for the economy. The same report shows that there were over 385,000commercial UAS and over 162,000 remote pilot (Part 107) certifications at the end of the 2019period. [2]An article on UAS challenges states that there are several dozen countries with active UASprograms and that while military applications drove early development, the civil market is thefastest growth sector now. [3] The advocacy group Association of Unmanned Vehicle SystemsInternational (AUVSI) predicted a market of more than $13 billion in the first three years of fullUAS integration in the NAS. [4] Additionally, a Congressional Research report predicted anannual $14 billion industry by 2025. [5] Clearly, UAS have commercial as well militaryimplications and