three or four coding objectives which aresubmitted and checked using MATLAB’s Grader software.Table 1: Laboratory activities focus on teaching and improving programming skill along with problem-solvingapplications relevant to Biomedical Engineering Title Concepts Application 1 Signal Properties Arrays, Indexing, Loops ECG Analysis, Descriptive Statistics 2 Systems of Equations Arrays, Curve Fitting Air Transport in Lungs (Windkessel Model) 3 Time and Frequency Domain Loops, FFT ECG Analysis, Pulse and Respiratory Rate Detection 4 Signal Processing Filtering ECG Analysis, Filtering 5
Paper ID #30497Work In Progress: Utilizing Guided Worksheets to Address Gender Gap inTroubleshooting Laboratory CourseSabia Zehra Abidi, Rice University Abidi has a doctorate in biomedical engineering from the University of Texas, Austin. Her investigations in Professor Krishnendu Roy’s lab utilized in vitro 3-D polymer scaffolds and notch ligand functionalized microbeads to scale up the production of cells of hematopoietic lineage. Optimization of scaffold and microbead properties resulted in enhanced commitment to hematopoiesis and T cell lineage, respectively, demonstrating promise for cell substitutes in diseases of
computationalanalysis were compared to students who only participated in the computational research project.The initial results indicate that there was no significant difference between the survey responsesof the two groups and that a computational CURE may have similar impact without including atraditional lab component. Further study of the project design and impact on students is plannedfor future semesters.IntroductionMost CUREs have been designed for laboratory courses or for joint lecture and laboratorycourses. This model works well for investigations in molecular biology or chemistry, but manycomputational research tools are taught in a lecture course only. There is evidence that lecturecourses can also be improved with the CURE model. The Genome Solver
Paper ID #23512Guided Modules Emphasizing Process-Based Troubleshooting Techniques HelpBelow-Average Performing Students Improve Instrumentation SkillsDr. Renata Fortuna Ramos, Rice University Renata Ramos is an Associate Teaching Professor and the Director of Undergraduate Studies in the De- partment of Bioengineering at Rice University, 6100 Main St., Houston, TX 77005: rfr1@rice.edu c American Society for Engineering Education, 2018 Guided Modules Emphasizing Process-Based Troubleshooting Techniques Help Below-Average Performing Students Improve Instrumentation SkillsAbstractInstrumentation laboratory
had to determinewhether the signal was due to upper extremity movement, lower extremity movement, or a visualstimulus. This information was then used in their laboratory modules to identify the appropriateelectrode locations to optimize the BCI Maze, given that it relied on a visually-evoked SSVEPresponse.Analysis of Post-Program Teaching Staff and Instructor Interviews:The faculty and teaching staff interviews were also qualitatively analyzed to assess the feasibilityof the laboratory modules and lectures. The teaching staff and instructors perceived the BCIcourse as a feasible task for high school students to perform and understand. In particular, theteaching staff noted that students were able to understand the practical benefits and
Biomedical Engineering) from Carnegie Mellon University. Dr. Zapanta has served as a Visiting Assistant Professor of Engineering at Hope College in Holland, MI, an Adjunct Professor of Engineering at Austin Community College in Austin, TX, and an Assistant Professor of Surgery and Bioengineering at The Pennsylvania State University in Hershey, PA. He also worked for CarboMedics Inc. in Austin, TX, in the research and development of prosthetic heart valves. Dr. Zapanta’s primary teaching responsibilities are Biomedical Engineering Laboratory and Design. Ad- ditional teaching interests include medical device design education and professional issues in biomedical engineering. Dr. Zapanta’s responsibilities as Associate
the Department of Chemical and Biological Engineering Department at the University of New Mexico. The research in her lab is focused on understanding the dynamics and structures of macromolecular assemblies including proteins, polymers, and lipid membranes. Undergrad- uates, graduate students, and postdoctoral scholars are trained in a multidisciplinary environment, utilizing modern methodologies to address important problems at the interface between chemistry, physics, engi- neering, and biology preparing the trainees for careers in academe, national laboratories, and industry. In addition to research, she devotes significant time developing and implementing effective pedagogical approaches in her teaching of
and their implications for teaching and learning, discourse analysis of scientific classroom talk, and science teacher education.Dr. Jacqueline Callihan Linnes, Purdue University Dr. Jacqueline Callihan Linnes is an assistant professor of Biomedical Engineering at Purdue University. She earned her Ph.D. in Bioengineering and certificate in Global Health from the University of Wash- ington. She was a Fogarty engineering fellow in collaboration with Brigham and Women’s Hospital and the Little Devices laboratory at MIT before moving to Boston University’s Biomedical Engineering de- partment where she received a NIH NRSA postdoctoral fellowship to develop molecular diagnostics for point-of-care pathogen detection. Dr
-Milwaukee.Dr. April Dukes, University of Pittsburgh April Dukes (aprila@pitt.edu) is the Faculty and Future Faculty Program Director for the Engineering Educational Research Center (EERC) and the Institutional Co-leader for Pitt-CIRTL (Center for the Inte- gration of Research, Teaching, and Learning) at the University of Pittsburgh. April studied at Winthrop University, earning a BS degree in Chemistry and BA degree in Psychology in 2000. She then completed her PhD in 2007 at the University of Pittsburgh, studying oxidative stress in in vitro models of Parkinson’s disease. During her prior graduate and postdoctoral work in neurodegeneration, April mentored several undergraduate, graduate, and clinical researchers and
serve as a Teaching Fellow for the National Effective Teaching Institute; and more.Dr. Patricia Brackin P.E., Rose-Hulman Institute of Technology Patricia Brackin is a Professor of Mechanical Engineering at Rose-Hulman Institute of Technology, where she teaches design throughout the curriculum. She is particularly interested in human-centered design. Her B.S. and M.S. are from the University of Tennessee in Nuclear Engineering and her Ph.D. is from Georgia Institute of Technology in Mechanical Engineering. Her industrial experience includes Oak Ridge National Laboratories, Chicago Bridge and Iron, and a sabbatical at Eli Lilly. She is a registered Profes- sional Engineer in the State of Tennessee and a Fellow of ASME.Dr
. Anthony is also active in ophthalmology research - having co-formed and currently serving as a Technical Director for the ophthalmology-based medical device design lab (ORBITLab) at the UIC Innovation Center. Anthony holds a B.S. and Ph.D. in Bioengi- neering.Dr. Miiri Kotche, University of Illinois, Chicago Miiri Kotche is a Clinical Associate Professor of Bioengineering at the University of Illinois at Chicago, and currently serves as Director of the Medical Accelerator for Devices Laboratory (MAD Lab) at the UIC Innovation Center. Prior to joining the faculty at UIC, she worked in new product development. She teaches capstone design courses, including the longstanding core senior design sequence and Inter
State University (OSU), before joining the OSU BME Department as an Assistant Professor of Practice in 2014. Her roles include designing and teaching undergraduate BME laboratory courses, and mentoring multidisciplinary senior capstone teams on rehabilitation engineering and medical device design projects. She also leads K-12 engineering outreach events, and is pursuing scholarship in student technical communication skills and preparing BME students for careers in industry. c American Society for Engineering Education, 2019 To What Extent Does Gender and Ethnicity Impact Engineering Students’ Career Outcomes? An exploratory analysis comparing biomedical to three other undergraduate