student teams work out theirinterpersonal problems only to then be faced with hours of grading lengthy reports. And,although the students only have to complete the work once, for faculty, the cycle repeatsannually.Two years ago, we attended a presentation on gamification in a laboratory course 1. Although theplan used in that paper did not suit us, the idea of adding an element of fun and competition tothe Unit Ops Lab had a certain appeal. We brainstormed ways to incorporate the game conceptand fix some of the small annoyances of teaching the lab courses. The small gamificationaddition was dubbed “Bragging Points”. The idea would be to recognize the students for doingsomething right (that they probably should have been doing anyway) and let them
Paper ID #7252A Computer-Controlled Biodiesel ExperimentDr. William M. Clark, Worcester Polytechnic Institute William Clark is an associate professor in the Chemical Engineering Department at Worcester Polytechnic Institute. He holds a B.S. from Clemson University and a Ph.D. from Rice University, both in Chemical Engineering. He has taught thermodynamics, separation processes, and unit operations laboratory for over 25 years. In addition to research efforts in teaching and learning, he has conducted disciplinary research in separation processes.Mr. Nicholas Janeiro Medeiros, Worcester Polytechnic InstituteDonal James
addresses all six cognitive levels of Bloom’s taxonomy.6 Of particularimportance is the critique phase of SBL wherein the Evaluation level of the taxonomy is clearlyinvoked. This aspect of learning is not incorporated in many active learning procedures butclearly is an essential part of SBL.A drawback to the implementation of SBL in a traditional class is the time constraint. As thetitle suggests, this technique has most frequently been used in studio-based classes. Thus theclass time allotted for the class is more typical of that for a laboratory class in engineering, twoto three hours. So while the SBL approach might work in a class for which an extendedrecitation section is part of the class, the time constraints inherent in a typical one-hour
. Page 22.1341.1 c American Society for Engineering Education, 2011 Student teams, a simulation or a real team experience?AbstractThe tradition in engineering education places students in teams during their senior year; likely aspart of a capstone laboratory or design course. In most cases teams were done on a “pick yourown partners” basis. Furthermore, no time was spent discussing teamwork, the importance ofteams, how teams should be structured or the skill set one needs to be an effective team member.To some extent, changes made by ABET to their accreditation criteria in 2000 have forced theengineering community to at least assess student teamwork. This, in turn, has motivated many totake a
Engineering Department at the Uni- versity of New Mexico. The research in her lab is focused on understanding the dynamics and structures of macromolecular assemblies including proteins, polymers, and lipid membranes. Undergraduates, grad- uate students, and postdoctoral scholars are trained in a multidisciplinary environment, utilizing modern methodologies to address important problems at the interface between chemistry, physics, engineering, and biology preparing the trainees for careers in academe, national laboratories, and industry. In addition to research, she devotes significant time developing and implementing effective pedagogical approaches in her teaching of undergraduate courses to train engineers who are
implementation of an assessment plan toevaluate the effectiveness of this tool in promoting higher order thinking skills. The NorthwestRegional Educational Laboratory is providing support for the project evaluation and assessment.A five-member advisory committee consists of engineers and statisticians from academia(Oregon State University, University of Oregon) and industry (LSI Logic, Intel, WaferTech).The VirtualCVD Learning Platform is available now for use in approved courses. Instructorswho are interested in adopting this software into their curriculum can go to the following webpage for information: http://che.oregonstate.edu/research/VirtualCVDMotivationProficiency with statistical methodologies such as Design of Experiments (DOE) is
experts in teaching and research directly related to the light hydrocarbon industry and shalefuel conversion. Second, we will send the survey to our list of 26 industrial partners. Thesepartners range from multinational oil and gas companies to boutique consulting and advisoryfirms focusing on oil and gas, energy, and chemicals. This list also includes national laboratories(i.e., Argonne, Oak Ridge, Pacific Northwest, and Sandia), international universities, andfoundations. The list will also be distributed through networks of the CISTAR faculty to expertsin the field. Together, this list encompasses a wide range of experts across a number of divisions.If the first survey reveals a lack of input from a particular sector, purposeful sampling will
would be sufficiently flexible to work with other processesshould the project change in the future. While this was not known at the time, buildingthis flexibility into the projects from the start enabled the highly flexible designenvironment currently used.In the Spring 2000 implementation of Senior Design, one of three course projects wasdevoted to paper-only design of the soap plant that could be built in the existing unitoperations laboratory space. Based upon their work, and continued work by Dr. Manevaland Hanyak, the department faculty were convinced that switching second semesterdesign to the practical process would be a good idea.From Spring 2001 to 2003, the course model switched entirely to practicalimplementation of different aspects
laboratory- andsimulation-based research, and foster the development of research communication skills. A moredetailed description of the REU program structure, objectives, and elements is included in priorwork evaluating initial student outcomes from the program 1.The current study presents a follow-up, second-year evaluation of a research experiences forundergraduates (REU) program that is currently in progress, funded by the National ScienceFoundation and focused on the integration of biology and materials. As in the first year of theprogram, participating students completed measures of research-based skills and experience,likelihood of pursuing graduate school, and openness to collaborating with others both prior toand after completion of the 10
problems. This wasachieved by using a variety of active learning and pedagogical techniques such as, annotatedtextbook readings of current journal publications, oral presentations highlighting the balancebetween nature and technology, laboratory demonstrations, and a semester-long group projectmotivated by student interest in nature and chemical engineering.In this paper, the opportunities and challenges associated with developing a new course in anemerging multidisciplinary research area will be addressed. In addition, suggestions for bestpractices in course development will be provided for instructors who seek to develop similar newresearch-based elective courses.BackgroundIn 2014, a new graduate-level course intended for Master’s students on
faculty who primarily requires lower level skills. We believe this isa fundamental issue in all of engineering education that must be directly dealt with in courseplanning.Bloom’s taxonomy is a powerful tool for discussion among faculty related to teaching. Thisstrength comes from its ability to: ‚ Relate closely to faculty’s experiences related to students not being able to successfully solve real world problems and their difficulty with engineering design. ‚ Lead to examination of what activities (lectures, discussions, recitations, laboratories, out-of-classroom activities) are best suited to challenge students into engagement at higher cognition levels. ‚ Clearly show what testing or assessment methods are needed
large research centers funded by DOE, USDA and other agenciesCenter/Laboratory name Institution / DepartmentEngines & Energy Conversion Laboratory Colorado State Univ. Depart. of Mech. Eng.(EECL)Center for BioEnergy Research and Dev. South Dakota School of Mines and Tech. (lead) Multi-Univ. /(CBERD) multidiscip.Biomass Energy Center Pennsylvania State Univ. / Multidiscip. (incl. Chem. Eng.)Office of Biobased Technologies (OBT) Michigan State Univ. / Multidiscip., (incl. Chem. Eng.)The Institute for Massachusetts Biofuel Univ. of Massachusetts Amherst / Multidiscip. (incl. Chem. Eng.)ResearchBiofuel Research Laboratory (BRL
literature studies also tend to focus on theapplication of plagiarism screening software to humanities courses, rather than for engineeringcourses requiring technical writing skills. It is possible that student views will vary depending onthe type of writing they are assigned. The objectives of this study are (1) to investigate theeffectiveness of plagiarism screening software in identifying plagiarism in ChE papers and (2) toidentify the attitudes of undergraduate ChE students toward their instructors using plagiarismscreening software.2. Description of studyPlagiarism screening software was applied to four courses in a university ChE curriculum duringthe Fall 2011 semester: a required junior-level unit operations laboratory course (CHE 330
specifically designed to facilitate knowledge inte-gration. This curriculum, in use for just over 5 years, is unique for its use of block scheduling.Block scheduling, in its simplest form, is transforming multi-semester courses into a single-semester course via extended, concentrated contact time. Among other things, the flexibilityafforded by extended and more frequent contact time allows (and encourages) greater opportu-nity for active and collaborative learning. The specific adaption of this technique to chemicalengineering has resulted in a curriculum comprised of 6 “Pillar” courses which are takenindividually in 6 consecutive undergraduate semesters and are accompanied by vertically in-tegrated laboratory experiences.IntroductionIn this paper, we
Comics Experiences and Assessment In general, students responded positively to the comics, finding them enjoyable to read and use. Inseveral sections over two years of Transport Laboratory I, students repeatedly cited the “Data Analysis”and “Uncertainty” comics in for their laboratory reports based on the documentation and explanation ofcertain principles and equations. The uncertainty propagation equations presented in the “Uncertainty”comic were a common point of reference, reinforcing the potential of a comic visual approach even toequations. In an anonymous survey, students were asked to comment on the implementation of thecomics and their usefulness; students’ positive comments to the “Uncertainty” comic included: “Hard topic to
2006-1686: LEARNING-BY-DOING AND COMMUNICATIONS WITHIN APROCESS CONTROL CLASSJim Henry, University of Tennessee-Chattanooga JIM HENRY (e-mail jim-henry@utc.edu) Dr. Henry is a professor in the area of chemical and environmental engineering at the University of Tennessee at Chattanooga. He received his Ph.D. from Princeton University. He has been teaching engineering for 37 years. He is interested in laboratory development for improved learning.Richard Zollars, Washington State University DICK ZOLLARS (e-mail rzollars@che.wsu.edu) Dr. Zollars is a professor in, and director of, the School of Chemical Engineering and Bioengineering at Washington State University. He
AC 2011-2744: ASSESSMENT IN THE HIGH PERFORMANCE LEARN-ING ENVIRONMENTSharon G. Sauer, Rose-Hulman Institute of Technology Sharon G. Sauer is an Associate Professor of Chemical Engineering at Rose-Hulman Institute of Technol- ogy where she is teaching a variety of classroom and laboratory courses. She has long-standing interests in active learning techniques and has published papers in this and other educational areas, as well as in the fields of statistical thermodynamics and electrophoresis.Pedro E. Arce, Tennessee Technological University Pedro E. Arce is a University Distinguished Faculty Fellow, Professor and Chair of the Chemical En- gineering Dpt. at Tennessee Technological University, Cookeville, TN. He has
students that take a position in an environmental, safety, andoccupational health department within a plant. The aim of this work is to share the instructionalapproach on safety and environmental compliance in our capstone course to obtain feedbackfrom other design education experts to improve our instruction.The need for enhanced process safety instruction in chemical engineering curricula has beenrecognized for a while in our discipline [1], [2], [3]. A greater awareness of this need resultedfrom the T2 Laboratories runaway reaction and explosion that occurred in Jacksonville, Floridain 2007 [4]. This event served as an impetus for ABET to specifically include process safety as arequired instructional component in chemical engineering curricula
engineeringprofessors retool their research from a technical specialty to engineering education.IntroductionDespite being a relatively small engineering discipline and despite the conservatism of ChEdepartments, chemical engineers have been leaders in the push for engineering education reformand in engineering education research. Examples of chemical engineering leadership inpedagogy include the Chemical Engineering Division of ASEE Summer School that meets everyfive years, the Division’s publication of the journal Chemical Engineering Education, andleadership in teaching professors how-to-teach. Leadership in educational research has includedthe development of the guided design method, introducing Problem Based Learning intoengineering, laboratory
Applications in Engineering Education, 4(3): 191-205.21. Ang, S. and R.D. Braatz (2002). Experimental projects for the process control laboratory. Chemical Engineering Education, 36(3): 182-187.22. Pérez-Herranz, V., A.I. Muñoz, J.L. Guiñon, J. Garcia-Antón, S.C. Navarrete (2003). An Internet-based Process Control Laboratory Project. Proceedings of the International Conference on Engineering Education, 21-25.23. Selmer, A., M. Goodson, M. Kraft, S. Sen, V.F. McNeill, B.S. Johnston, C.K. Colton (2005). Performing Process Control Experiments Across the Atlantic. Chemical Engineering Education 39(3): 232-237.24. Gossage, J.L., C.L. Yaws, D.H. Chen, K. Li, T.C. Ho, J. Hopper, D.L. Cocke (2001). Integrating best practice
set the stage for him to receive the Marian Smith Award given annually to the most innovative teacher at Washington State University.Dr. Paul B Golter, Washington State University Paul B. Golter obtained an MS and PhD Washington State University and made the switch from Instruc- tional Laboratory Supervisor to Post-Doctoral Research Associate on an engineering education project. His research area has been engineering education, specifically around the development and assessment of technologies to bring fluid mechanics and heat transfer laboratory experiences into the classroom. Page 26.1288.1
chosen a different approach to this section,from teaching a broad overview using a seminar approach, to focusing on teachingspecific software necessary for future courses.Introduction to Chemical Engineering The department faculty has adapted a project-based learning approach due to thelarge success shown in many other similar introductory level courses(3-7). The goal was tointroduce different unit operations through a fun process example that was simple enoughfor the students to follow. The process needed to involve simple chemistry and provideopportunities for introducing different unit operations, teamwork, ethics andsustainability. The other challenge, due to lack of laboratory space, the process ideallywould not require the use of a
2011,27, 458-476.7. Agarwala, R.; Abdel-Salam, T. M.; Faruqi, M., Introducing thermal and fluid systems toindustrial engineering technology students with hands-on laboratory experience. In AmericanSociety for Engineering Education, Hawaii, 2007.8. Ma, J.; Nickerson, J. V., Hands-on, simulated, and remote laboratories: A comparativeliterature review. ACM Computing Surveys (CSUR) 2006, 38, 7.9. Ribando, R. J.; Richards, L. G.; O’Leary, G. W., A “Hands-On” Approach to TeachingUndergraduate Heat Transfer. In ASME 2004 International Mechanical Engineering Congressand Exposition, American Society of Mechanical Engineers: 2004; pp 413-422.10. Minerick, A., Desktop experiment module: heat transfer. In American Society
Paper ID #15090Using Time More Efficiently: Converting an Interview Protocol to a SurveyDr. Paul B. Golter, Washington State University Paul B. Golter obtained an M.S. and Ph.D. from Washington State University and made the switch from Instructional Laboratory Supervisor to Post-Doctoral Research Associate on an engineering education project. His research area has been engineering education, specifically around the development and as- sessment of technologies to bring fluid mechanics and heat transfer laboratory experiences into the class- room.Dr. Olusola Adesope, Washington State University Dr. Olusola O. Adesope is
college is for the instructor to talk informally with groups duringa three hour design laboratory period that is held once per week. However, the course instructorsin chemical engineering have selected the dedicated meeting approach described above ratherthan this alternate approach, because it guarantees a completely devoted time period for eachteam with the instructor. Thus, the practice of a regular checkup espoused by Davis [2] isaccomplished. In the laboratory checkup scenario described above, not all teams may getindividual time with the instructor each week. The preferred approach is more time consumingfor the instructors, however it is worthwhile, since it better ensures the success of all teams ineach course offering. The effectiveness
Apprentice Award in 2014. c American Society for Engineering Education, 2018 Work in Progress: Content Validation of the Engineering Process Safety Research Instrument (EPSRI)IntroductionChemical processing companies are increasingly dedicated to process safety due to thesignificant number of process safety failures that occur each year. For example, an explosionfollowed by a chemical fire killed four employees while injuring 32 employees, and 28 membersof the public in 2007 at T2 Laboratories Inc. The explosion was a result of a runaway exothermicreaction that was not a recognized hazard from T2.1 This incident led to the addition in 2012 of“consideration of hazards associated with the
(Taxol) through the use of plant cell cultures from the Taxus Yew Tree. Throughout her time at Rowan and UMass, she developed a passion for undergraduate education. This passion led her to pursue a career as a lecturer, where she could focus on training undergraduate chemical engineering students. She has been teaching at UK since 2015 and has taught Fluid Mechanics, Thermodynamics, Computational Tools and the Unit Operations Laboratory. She is especially interested in teaching scientific communication and integration of process safety into the chemical engineering curriculum. c American Society for Engineering Education, 2020 Student Performance in an Online Chemical Engineering
instructors to perform the assessmentreliably is needed. This is discussed later.Capstone Experiences Capstone experiences are where students are supposed to apply what they have previouslylearned to a comprehensive, usually design-oriented, problem. Therefore, this is a very logicalplace to assess what students have learned. Furthermore, since these experiences are usually Page 12.548.4done in teams and they usually involve written reports and oral presentations, the professionalskills (teamwork, communication, global/societal context, life-long learning, contemporaryissues) can be assessed similarly. Laboratory experiences may also fall into
direct comparison of time commitments for the course, but it does appearthat time devoted to experimental laboratory work was comparable to that spent on lecture andcalculation laboratories in the first design course, but significantly less important in the secondcourse.Class DetailsThe typical size of a class section as reported by instructors was around 45 students, with someclasses as large as 130. The distribution of class sizes is presented as Figure 1. Page 23.675.3 30 Number of respondents 25 20 15 10
. Page 23.126.1 c American Society for Engineering Education, 2013 A Versatile Compressible Fluid ExperimentAbstractWe have developed a versatile new laboratory apparatus that can be used for teaching a varietyof chemical engineering fundamentals. The new equipment is used in our unit operations lab toaddress misconceptions and a lack of experience with compressible fluids by studying pressuredrop during air flow through a pipe. We extended the range of experiments that can be donewith the apparatus by including a Coriolis meter, an anemometer, an inline heater, a PIDtemperature controller, a vortex tube, and a Tesla turbine. This poster describes how the newequipment can be used in unit ops lab