Programs of the Department of Mechanical Engineering at Stevens Institute of Technology. He received a Diploma in Applied Mechanics in 1989 from Chemnitz University of Technology, Germany, and was awarded M.S. and Ph.D. degrees from the Department of Mechanical Engineering at The Ohio State University in 1994 and 1997, respectively. He teaches both undergraduate and graduate courses related to mechanisms and machine dynamics, integrated product development, solid mechanics and plasticity theory, structural design and analysis, engineering analysis and finite element methods and has interests in remote laboratories, project-based learning and student learning assessment. His research is in the areas of remote sensing and
AC 2012-3676: OUTCOME OF AN ONLINE LABORATORY TO SUPPORTA MASTER PROGRAM IN REMOTE ENGINEERINGProf. Michael E. Auer, Carinthia University of Applied Sciences Since 1995, Michael Auer has been professor of electrical engineering at the Systems Engineering De- partment of the Carinthia University of Applied Sciences, Villach, Austria, and has also held teaching positions at the universities of Klagenfurt (Austria), Amman (Jordan), Brasov (Romania), and Patras (Greece). He was invited for guest lectures at MIT Boston, Columbia University, and the technical uni- versities of Moscow, Athens, and others. He is a senior member of IEEE and a member of VDE, IGIP, etc., author or co-author of more than 180 publications, and a
AC 2008-1316: REALISTIC LOOKING INTERFACES: IN SEARCH OF THE BESTERGONOMIC METAPHORS FOR REMOTE AND VIRTUAL LABORATORYINTERFACESDavid Olowokere, University of Alabama at BirminghamKayode P. Ayodele, Obafemi Awolowo UniversityLawrence O. kehinde, Texas Southern University, Houston, TexasOlutola Jonah, Obafemi Awolowo UniversityTemitope O. Ajayi, Obafemi Awolowo University, Ile-Ife, NigeriaO.O. Akinwunmi, Obafemi Awolowo University, Ile-Ife, Nigeria Page 13.1025.1© American Society for Engineering Education, 2008 Realistic Looking Interfaces: in Search of the Best Ergonomic Metaphors for Remote and Virtual Laboratory Interfaces.AbstractIn the last few years
) Page 26.1305.1 c American Society for Engineering Education, 2015 122th ASEE Annual Conference and Exposition Seattle, Washington, USA, June 14-17, 2015 Zhang, Z., Zhang, M., Chang, Y., Esche, S. K. & Chassapis, C.Real-time 3D Reconstruction for Facilitating the Development of Game-based Virtual Laboratories Zhang, Z., Zhang, M., Chang, Y., Esche, S. K. & Chassapis, C.AbstractGame-based virtual laboratories (GBVLs) represent an important implementation of virtual realityand are often considered to be simulations of real or artificial environments. They are based
, three exams are given including a comprehensive final exam that assessesstudents’ achievement of items 1, 2, 3, 4, 7, 8, and 9.2.1 DSP System DesignA separate, but related course, Real-time DSP System Design, was taught for the first timein 2005 at Georgia Tech. This course had a much smaller laboratory component and wasdesigned to expose students to real-time DSP concepts and system design trade-offs.3 Proposed FPGA DSP CurriculumHaving covered previous courses in DSP hardware design and system-level design, a refinedfixed-point DSP hardware design curriculum that uses a system design approach will be pre-sented. Teaching fixed-point hardware design is most natural within a hands-on, laboratoryenvironment where real-world obstacles
Massachusetts Institute of Technology-Lincoln Laboratory. He co-authored two textbooks on microcontrollers and embedded systems and authored over 70 journal and conference papers. He is a member of Eta Kappa Nu, Tau Beta Pi (faculty advisor), IEEE (senior), and ASEE. He is a registered Professional Engineer in Colorado. In 2005, Pack was named “Colorado Professor of the Year” by the Carnegie Foundation for the Advancement of Teaching. His research interests include cooperative UAVs, intelligent control, automatic target recognition, and robotics. Email: daniel.pack@usafa.edu Page 12.1586.1
structure of micro-controller application. Page 15.69.5technique and I2C bus communication technique. Totally 25 laboratory experiments weredesigned for hands-on practicing. These contain all the most significance principles whichshould be known by students.Teaching contents per each lab are listed in Table 2. We intended to combine the lecturingsection with the laboratory experiment as an integral unit to ease the learning experience ofstudents. The result is that 10 teaching items are addressed in each lab. Firstly, the goal ofexperiment is introduced, and then the action of the experiment is clearly described. For example,sometimes photographs are
Paper ID #7467Serious Games to Improve Student Learning in Engineering ClassesMr. Pramod Rajan, Laboratory for Innovative Technology & Engineering Education (LITEE) Pramod Rajan is in the doctoral program in the Department of Mechanical Engineering at Auburn Univer- sity. He is a graduate research and teaching assistant. Rajan is currently working on developing serious games to improve student learning in engineering classes.Dr. P.K. Raju, Auburn University Dr. Raju is the Thomas Walter Distinguished professor of Mechanical Engineering at Auburn University. He is the co-founder and director of the NSF-funded
AC 2012-3729: TEACHING DIGITAL DESIGN IN A PROGRAMMABLELOGIC DEVICE ARENADr. Christopher R. Carroll, University of Minnesota, Duluth Christopher R. Carroll received a bachelor’s degree from Georgia Tech, and M.S. and Ph.D. degrees from Caltech. After teaching at Duke University, he is now Associate Professor of electrical and computer en- gineering at the University of Minnesota, Duluth, with interests in special-purpose digital system design, VLSI, and microprocessor applications. Page 25.1249.1 c American Society for Engineering Education, 2012 Teaching
2006-1905: TEACHING ROBOT DESIGN: STUDENT-DRIVEN, OPEN-ENDEDDESIGN PROJECTSBradley Bishop, U.S. Naval Academy BRADLEY E. BISHOP is an Associate Professor in the Weapons and Systems Engineering Department at the United States Naval Academy (USNA). He received the B.S. degree in Electrical Engineering from Michigan State University in 1991, and the M.S. and Ph.D. degrees in EE from the University of Illinois at Urbana-Champaign in 1994 and 1997, respectively. He is the founder of the Mobile Robotics Laboratory at USNA. His research interests include robot swarm control, autonomous surface vessels, and nonlinear control.Carl Wick, U.S. Naval Academy CARL E. WICK is a Professor and
, the we CITfaculty were hesitant to teach such a course because of several perceived obstacles. In the case ofiPhone development, both instructors and students would be required to learn several newtechnologies.Developing for the iPhone requires using Macintosh workstations. All prior development formobile devices had been done in a Windows environment, as was done in the prerequisite threeprogramming courses. In fact, there was no Macintosh computing laboratory within our Page 22.1305.3department. Macintosh workstations use the Macintosh Operating System (Mac OS). Whilemany students, and a few faculty, own and use Mac computers, no
0 0 Figure 11. Line voltage as a function of distance and time for pulse propagation.ConclusionThe authors have discussed a series of MATLAB programs written to assist in the teaching ofelectrical transmission lines. Both sinusoidal steady-state and transient behaviors areexamined graphically with dynamic animations being the most instructive. The programs can beused in the classroom or in the computer laboratory, although some careful thought by theinstructor on how they will be used is required to get the maximum benefit. These and otherpartial differential equation animation programs are available at the University of WyomingMATLAB animation resource website at www.eng.uwyo.edu/classes/matlabanimateThese
Paper ID #18766Applying Scratch Programming to Facilitate Teaching in k-12 ClassroomsDr. Afrin Naz, West Virginia University Institute of Technology Dr. Afrin Naz is an assistant professor at the Computer Science and Information Systems department at West Virginia University Institute of Technology. She is working with high school teachers to inspire the K-12 students to the STEM fields. In last four years Dr. Naz and her team launched six workshops for high school teachers. Currently her team is training the high school teachers to offer online materials to supplement their face-to-face classroom.Dr. Mingyu Lu, West
nanotechnology has nowbrought urgent challenges to undergraduate engineering education: How to integrate theemerging nanotechnologies into classroom teaching? How to prepare our students fortomorrow’s highly competitive global job markets? And how to maintain the US’s leadershipand dominance in science and technology in an era of globalization?Funded by Department of Education, a project is carried out to integrate nanotechnology into theundergraduate science and engineering curricula through a sequential preparation approach fromintroductory freshman to the advanced senior level. The curricula are reinforced by innovativecomputer simulations and state-of-the-art nanomaterials laboratory experiments anddemonstrations. The work presented in this paper is
AC 2012-3856: TEACHING NETWORK SECURITY THROUGH SIGNA-TURE ANALYSIS OF COMPUTER NETWORK ATTACKSDr. Te-Shun Chou, East Carolina University Te-Shun Chou received his bachelor’s degree in electronics engineering from Feng Chia University, Tai- wan, R.O.C. in 1989, and the master’s degree and doctoral degree both in electrical engineering from Florida International University, Miami, Fla., in 1992 and 2007, respectively. In 2008, he joined East Car- olina University, Greenville, N.C., where he is currently an Assistant Professor with the Department of Technology Systems. His research interests include soft computing, wireless sensor network, and network security, especially intrusion detection and incident response
points in database design. Database design knowledgeis technical as well as practical. Many skills are required including problem-solving, critical think-ing, creativity, communication, team working, and time management. Traditionally, expositionallectures or closed and hands-on laboratories are used to teach database design. Exams are usuallyused to evaluate knowledge and skills required in the database design process. In the rest of thisarticle, we refer to such methods as traditional methods. Unfortunately, despite their wide use,traditional methods are found to be ineffective for teaching and learning the abstract and complexdomain of database design [2, 3]. While existing teaching methods for design learning providesome clues, there is no
Page 11.33.1© American Society for Engineering Education, 2006A Comprehensive Suite of Tools for Teaching Communications Courses Abstract Both the U.S. Naval Academy and the University of Wyoming offer a wide variety of electricalengineering courses concerning communications. Additionally, required design courses offeropportunities for exposure to a wide variety of real-world communication systems and topics.Whether these courses are discussing the basics of analog and digital communications, or thedetails of advanced digital modulation schemes and error performance, until very recently, wehave found it exceeding difficult to perform communications systems demonstrations and thesubsequent signal
, June 1997. Paper 1220-06. [3] J. H. McClellan, C. S. Burrus, A. V. Oppenheim, T. W. Parks, R. W. Schafer, and S. W. Schuessler, Computer-Based Exercises for Signal Processing Using M ATLAB 5. M ATLAB Curriculum Series, Prentice Hall, 1998. [4] G. W. P. York, C. H. G. Wright, M. G. Morrow, and T. B. Welch, “Teaching real-time sonar with the C6711 DSK and MATLAB,” ASEE Comput. Educ. J., pp. 79–87, July–September 2002. Page 25.1098.8 [5] T. B. Welch, C. H. G. Wright, and M. G. Morrow, “Experiences in offering a DSP-based communi- cation laboratory,” in Proceedings of the 11th IEEE Digital Signal Processing Workshop and the 3rd
AC 2010-685: A SECOND LIFE VIRTUAL STUDIO AS AN ONLINE TEACHINGENVIRONMENTKatrina Neville, Royal Melbourne Institute of TechnologyPeter Burton, Royal Melbourne Institute of TechnologyIan Burnett, Royal Melbourne Institute of Technology Page 15.86.1© American Society for Engineering Education, 2010 A Second Life Virtual Studio as an Online Teaching EnvironmentAbstractIn this paper the development of a virtual learning environment in Second Life is detailed. Thelearning environment described is in the form of a virtual television studio for use in multimediaengineering courses, with an example implementation described for RMIT University’s offshorecampus.This paper
Using Inexpensive Hardware and Software Tools to Teach Software Defined Radio Abstract Signal processing topics such as software defined radio are more easily taught by using demonstra- tions and laboratory experiences that pique the students’ interest. This paper describes a new, inexpensive software defined radio educational platform based upon M ATLAB and the Texas Instruments C6713 dig- ital signal processing starter kit. We describe the various hardware and software issues and discuss how such a platform can be used in the classroom.1 INTRODUCTIONSoftware defined radio (SDR) is a topic that is becoming
to other platforms.ConclusionA combination of assembly and C language was used to teach the basics of microprocessorprogramming in the updated Microprocessors course at BSU, using a modern developmentenvironment (a soft processor instantiated on an FPGA with classic RISC architecture).Overlapping the teaching of both languages had a synergistic effect on educating the studentsabout microprocessors. In addition to learning how microprocessors work and control a broadrange of devices, the students learned problem-solving skills and practiced these skills withrealistic laboratory assignments and projects. Materials developed to teach the updatedMicroprocessors course are continuing to be expanded and refined.References[1] B.E. Dunne, A.J
AC 2010-138: STRATEGIES FOR TEACHING CAD AUTOMATION TOENGINEERS AND TECHNOLOGISTSDerek Yip-Hoi, Western Washington University Derek Yip-Hoi is an Assistant Professor in the Department of Engineering Technology at Western Washington University and coordinator of the department’s CAD/CAM program. He received his Ph.D. in Mechanical Engineering from the University of Michigan in Ann Arbor where he worked for several years as a Research Scientist in the area of Reconfigurable Manufacturing before moving out to the Pacific Northwest where he spent 3 years at the University of British Columbia before moving to WWU. His teaching interests are in CAD/CAM, CNC, design methodology, mechanical
Paper ID #11826Work-in-Progress. SiLaRR: Installing, deploying on Internet, and using aRobotics Laboratory Remote or in classroom with a few clicksDr. German Carro Fernandez P.E., UNED (Spanish University for Distance Education Dr. on Electrical Engineering and Industrial Control, Spanish University for Distance Education (UNED), Madrid, Spain, M. Sc. on Research on Electrical Engineering and Industrial Control (Specialty on Telematics Engineering), (UNED), Madrid, Spain, Bachelor’s Degree of Computer Systems Engineering Tech.(BCompSysEng) (UNED), Madrid, Spain, M. Sc. on Financial and Tax Administration, University of
systemin lab with a teaching assistant were compared with those who did the lab as a homeworkassignment. Across all experiments, compared to groups who used the learning system, thestudents in the 2004 control group rated their perceived learning, motivation, and real worldlearning significantly higher, but scored significantly lower on an objective quiz over thematerials covered in the lab. In the 2009 study, students who used the system on their ownscored significantly higher on the objective quiz than those who used the system in class.Further, students in all experimental groups rated their knowledge, following the uses of thesystem, higher than their perceived knowledge before using the system, where they wereonly exposed to textbook and
research assistant at the Institute of Physical Chemistry, TU Berlin. He finished his doc- toral thesis in physics in 2011. Dr. Schmitt holds a series of scientific awards, the Chorafas award for extraordinary scientific results (2009), the Stifterverband Fellowship for excellence in teaching (2015) and the award for excellent teaching at TU Berlin (2018). 80 research papers, 2 patents, 1 book and 200 partially invited talks on international conferences summarize his results in photosynthesis research, en- vironmental spectroscopy, and didactic research. Dr. Schmitt educates students for more than 16 years. From 2002-2005 he was tutor in the project laboratory of physics, from 2005-2010 he supervised the advanced
Paper ID #12018A Blocks-based Visual Environment to Teach Robot-Programming to K-12StudentsMr. Raghavender Goud yadagiri, NYU Polytechnic School of Engineering Raghavender Goud Yadagiri received his B.Tech degree in Electronics and Communication Engineering from JNTUH, Hyderabad, India, in 2011. After obtaining his B.Tech he worked as an Embedded As- sociate at Thinklabs Technosolutions Pvt. Ltd for two years. He is currently pursuing a M.S degree in Electrical and Computer Engineering with specialization in Computer Engineering. Raghavender con- ducts research in the Mechatronics and Controls Laboratory at NYU Polytechnic
Paper ID #15269WORK IN PROGRESS: Teaching Broadly-Applicable STEM Skills to HighSchool Sophomores Using Linux and SmartphonesProf. Daniel Brian Limbrick, North Carolina A&T State University Dr. Daniel Limbrick is an assistant professor in the Electrical and Computer Engineering Department at North Carolina Agricultural and Technical State University (NC A&T). As director of the Automated Design for Emerging Process Technologies (ADEPT) laboratory at NC A&T, he researches ways to make computers more reliable (i.e., radiation hardening) and scalable (e.g., three-dimensional integra- tion) through novel approaches
mid-career employees and military personnel [4]. In order that the onlineeducation is at least equally effective (if not better) than face-to-face education in traditionalclassroom in all aspects such as academic quality, rigor and outcomes, appropriate teaching toolsmust be developed to suit the online teaching / learning media. In this regard, we believe the casestudy based education is one of the superior tools to deliver an equivalent laboratory experiencefor the online students!The process for developing case studies in described in section 2, a fully developed case study inthe domain of software testing is presented in Section 3, the instructions and teaching notes aregiven in Section 4, pedagogy and educational outcomes are discussed
. Page 22.1703.1 c American Society for Engineering Education, 2011 Work in Progress: Distance teaching of Thermodynamics with Adobe Connect and Dedicated Engineering Software.Abstract.A considerable number of schools nationwide are currently offering undergraduate engineeringand engineering technology programs via distance-learning. Unlike other “narrative” academicprograms, however, engineering programs still present pedagogical challenges in distanceeducation especially in subjects that require mathematical derivation, sample problem-solution,property evaluation and laboratory practice. Several technologies are currently available fordistance education, such as: TV broadcasting, web-based
AC 2009-1169: USING SYMBOLIC COMPUTATION, VISUALIZATION, ANDCOMPUTER-SIMULATION TOOLS TO ENHANCE TEACHING AND LEARNINGOF ENGINEERING ELECTROMAGNETICSRadian Belu, Drexel UniversityAlexandru Belu, Case Western Reserve University Page 14.1333.1© American Society for Engineering Education, 2009 Using Symbolic Computation, Visualization and Computer Simulation Tools to Enhance Teaching and Learning of Engineering ElectromagneticsAbstractIn this paper we will review various technologies and techniques in simulating anddeepening understanding of abstract and highly mathematical subjects such aselectromagnetics. Specifically the paper describes some of