AC 2007-452: A HYDRAULIC CIRCUITS LABORATORY – TO IMPROVESTUDENT UNDERSTANDING OF BASIC ELECTRICITYR. William Graff, LeTourneau University R. William Graff is a professor in the School of Engineering and Engineering Technology at LeTourneau University, where he has taught since 1975. He received his B.S., M.S., and Ph.D. degrees from Purdue University in electrical engineering. Prior to joining the faculty at LeTourneau, he was assistant professor of electrical engineering at Drexel University for six years, and at Wilkes College for two years. His professional interests include antennas, microwaves, plasmas, teaching, and ethics.Paul Leiffer, LeTourneau University Paul R. Leiffer is
AC 2012-3678: A GRID OF ONLINE LABORATORIES BASED ON THEILAB SHARED ARCHITECTUREProf. Michael E. Auer, Carinthia Tech Institute, Austria Since 1995, Michael Auer is professor of electrical engineering at the Systems Engineering Department of the Carinthia University of Applied Sciences, Villach, Austria and has also held teaching positions at the universities of Klagenfurt (Austria), Amman (Jordan), Brasov (Romania), and Patras (Greece). He was invited for guest lectures at MIT Boston and Columbia University and technical universities of Moscow, Athens, and others. He is a Senior Member of IEEE and member of VDE, IGIP, etc., author or co-author of more than 180 publications, and a leading member of numerous national
Paper ID #13467BYOE: Affordable and Portable Laboratory Kit for Controls CoursesRebecca Marie Reck, University of Illinois, Urbana-Champaign Rebecca M. Reck is currently pursuing a Ph.D. in systems engineering at the University of Illinois at Urbana-Champaign. She completed her master’s degree in electrical engineering at Iowa State Univer- sity during her eight years at Rockwell Collins and her bachelor’s degree in electrical engineering with a mathematics minor, from Rose-Hulman Institute of Technology in 2005. Her research interests include controls, signal processing, and engineering education. Specific areas of
0 1 2 3 4 5 6 7 Confidence with theory Figure 4. Frustration level was uncorrelated with students’ confidence with the theoretical aspects of the course.From the previous results, we as faculty members can learn valuable insight to incorporate intoour laboratory courses for a more successful experience. We observed that the most significantsource of student frustration are difficulties with equipment and troubleshooting. Based on this,the most immediate recommendation is for the instructor and any teaching assistants ortechnicians to spend additional time prior to the laboratory session
AC 2010-2188: FLEXIBLE CIS LABORATORY ENVIRONMENT EMPLOYINGMULTI-BOOT AND VIRTUAL COMPUTINGDawn Spencer, Colorado State University, PuebloNebojsa Jaksic, Colorado State University, Pueblo Page 15.593.1© American Society for Engineering Education, 2010 Flexible CIS Laboratory Environment Employing Multi-boot and Virtual ComputingAbstractThis work describes an innovative flexible multipurpose laboratory environment designed tosupport a large variety of laboratory exercises in a Computer Information Systems (CIS)curriculum. The environment employs multi-boot and virtual computing. Although it may beideal to have separate labs for each course
Paper ID #11325What to do when 3D Printers go wrong: Laboratory ExperiencesDr. Nebojsa I Jaksic P.E., Colorado State University, Pueblo NEBOJSA I. JAKSIC holds the Dipl. Ing. degree in electrical engineering from Belgrade University, the M.S. in electrical engineering, the M.S. in industrial engineering, and the Ph.D. in industrial engineering from the Ohio State University. He is currently a Professor at Colorado State University-Pueblo. Dr. Jaksic served as the ASEE Rocky Mountain Section Chair (2007-2008), the ASEE DELOS Program Chair (2008), the ASEE DELOS Division Chair (2009), the ASEE Zone IV Conference Program
AC 2008-83: DEVELOPMENT OF AN INTERDISCIPLINARY LABORATORYCURRICULUM FOR EMERGING PRODUCT MANUFACTURINGFrank Liou, Missouri University of Science & Technology Frank Liou is a Professor in the Mechanical Engineering Department at the Missouri University of Science and Technology (MST). He currently serves as the Director of the Interdisciplinary Manufacturing Engineering Program at MST. His teaching and research interests include CAD/CAM, rapid prototyping, and rapid manufacturing. He has published over 150 technical papers, and has research grants and contracts over $8M. Page 13.422.1© American
2006-1346: A PROGRESSIVELY OPEN ENDED LABORATORY TO PROMOTEACTIVE LEARNINGDavid Pape, Central Michigan University David A. Pape is a professor of Mechanical Engineering and serves as Engineering Programs Coordinator in the Engineering and Technology Department at Central Michigan University. Prior to joining CMU, from 1998-2004 he was professor and chair of the Mechanical Engineering Department at Saginaw Valley State University. From 1989 to 1998 he was a faculty member at Alfred University, where he served as Department Chair from 1995-1998. Dr. Pape earned a B.S. degree with distinction from Clarkson University in 1980, an M.S. from the University of Akron, and a Ph.D. from the State
AC 2012-4044: FACTORIAL DESIGN OF EXPERIMENTS FOR LABO-RATORIES INCORPORATING ENGINEERING MATERIALSDr. David R. Veazie, Southern Polytechnic State University David Veazie received his B.S. in mechanical engineering from Southern University in 1986, and his M.S. and Ph.D. in mechanical engineering from Georgia Tech in 1987 and 1993, respectively. He worked for AT&T Bell Laboratories in New Jersey as a member of the technical staff and was a National Research Council (NRC) Postdoctoral Fellow at the NASA Langley Research Center. In 1994, he joined Clark Atlanta University’s Department of Engineering, and was the Director of the Mechanical Testing Labora- tories (MTL) and Associate Director of the NASA-funded High
Mechanics. For the last thirteen years, she has been a professor at York College of Pennsylvania where she teaches thermal sciences, freshmen design courses, and computer programming.Dr. Timothy J. Garrison, York College of Pennsylvania Timothy Garrison is Chair of the Engineering and Computer Science Department at York College of Pennsylvania. c American Society for Engineering Education, 2016 A Laboratory Structured to Encourage Thoughtful, Task-Based ExperimentationAbstractIn the classic laboratory format, students follow detailed instructions to perform a lab and thenturn in a formal report the following week. Typically, the students blindly collect data with
AC 2008-749: BIOTECHNOLOGY AND BIOPROCESSING ANDMICROBIOLOGY LABORATORY COURSES: A MODEL FOR SHARED USE OFINSTRUCTIONAL LABORATORIES BETWEEN ENGINEERING AND SCIENCESusan Sharfstein, Rensselaer Polytechnic Institute Susan Sharfstein is an Assistant Professor in the Departments of Chemical and Biological Engineering and Biology at Rensselaer Polytechnic Institute. Her research interests are in mammalian cell culture for bioprocessing. Her teaching interests are in biotechnology and biochemical engineering and in integrating engineering and life science education. Professor Sharfstein received her Ph.D. in Chemical Engineering from UC Berkeley. She is the recipient of an NSF CAREER award whose
Engineering in the Fac- ulty of Engineering and Information Technologies at The University of Sydney. Before this he was a Director of the Centre for Real-Time Information Networks (CRIN) - a designated research strength at the University of Technology, Sydney focused on blending embedded systems and telecommunications in addressing real-world problems. He is also the CEO of the not-for-profit organisation The LabShare Institute, and past President of the Global Online Laboratory Consortium. Professor Lowe has published widely during his more than 20 year teaching career, including three textbooks. c American Society for Engineering Education, 2017 Non-Expert Sensor Based Laboratory
. His recent projects concentrate on course building efforts with substantial pedagogical and technological innovations. Prior to this, Chad led a laptop-required program for pre-service teachers in the UT Austin College of Education. c American Society for Engineering Education, 2016 Teaching Embedded Systems in a MOOC FormatAbstractWe have designed and implemented a Massive Open Online Class (MOOC) with a substantiallab component within the edX platform. We deployed this MOOC three times with a totalenrollment of over 100,000 students. If MOOCs are truly going to transform engineeringeducation, then they must be able to deliver classes with laboratory components. Our offeringgoes a long
Paper ID #9454Teaching Freshman Design Using a Flipped Classroom ModelDr. Ann Saterbak, Rice University Ann Saterbak is Professor in the Practice and Associate Chair for Undergraduate Affairs in the Bioengi- neering Department at Rice University (Houston, Texas). Saterbak joined the Bioengineering Department shortly after it formed and was responsible for developing its laboratory program. Saterbak introduced problem-based learning in the School of Engineering and more recently launched a successful first-year engineering design course. Saterbak is the lead author of the textbook, Bioengineering Fundamentals.Dr. Maria Oden
AC 2011-549: TEACHING DIGITAL FILTER IMPLEMENTATIONS US-ING THE 68HC12 MICROCONTROLLERLi Tan, Purdue University North Central DR. LI TAN is currently with the College of Engineering and Technology at Purdue University North Central, Westville, Indiana. He received his Ph.D. degree in Electrical Engineering from the University of New Mexico in1992. Dr. Tan is a senior member IEEE. His principal technical areas include digital signal processing, adaptive signal processing, and digital communications. He has published a number of papers in these areas. He has authored and co-authored three textbooks: Digital Signal Processing: Fundamentals and Applications, Elsevier/Academic Press, 2007; Fundamentals of Analog and
. Furthermore, many manufacturers provide commercialteaching tools that were not available before. These straightforward tools make it easierto teach abstract concepts. These two primary factors permit us to try different ways touse time more efficiently and increase student engagement. In this case, we havestudents start with laboratories prior to complete coverage of all the theoreticalbackground and encourage them to find answers from later lectures by first exposingthem to problems associated with experimental results.The hypothesis behind this approach is two-fold: 1) Students, after gettingstraightforward, easy-to-understand, visible results from carefully designed laboratorysessions, will be motivated to learn more; 2) they will become more
mobile robotics. He is currently a lec- turer in the School of Engineering, Deakin University, where he teaches various electronics and robotics units.Ms. Robynne Hall, Deakin University Robynne Hall spent 13 years in the photographic industry designing cutting edge commercial print labo- ratories throughout Australia, maintaining and teaching silver halide and digital printing machines. As a mature age student, she returned to study and in 2002 completed an advanced diploma in electronics. She has since spent 12 months at the Gordon Institute of Technology in Geelong as a Laboratory Technician and tutor. During the past eight years, Hall has been at Deakin University as the Technical Officer for electronics
AC 2009-1640: HANDS-ON EXPERIENCE WITH RANKINE CYCLE IN THETHERMAL SCIENCE LABORATORY COURSEMessiha Saad, North Carolina A&T State University Messiha Saad is an Assistant Professor of Mechanical Engineering at North Carolina A&T State University. He received his Ph.D. from North Carolina State University. He taught Mechanical engineering core courses for more than twelve years; he also teaches Internal Combustion Engines, Design of Thermal Systems, HVAC, and related courses in the Thermal Science areas. He received numerous teaching awards including: The Most Helpful Teacher of the Year Award in 2005, Procter & Gamble Student Choice Award Favorite Teacher in 2004, and Teacher of
requirement, (2) a plan for their procedure, and (3) diagramsof system architecture. Students are encouraged to discuss to each other, and the teamsactively discuss the procedure in use. Based on the course design, students are asked tocomplete their own OBD implementation step by step. The students are expected tounderstand the practical aspect of an OBD, and have comprehensive exercises on OBDimplementation based on embedded system. This paper presents the course and hands-onOBD implementation designs, and the teaching experiences and student responses.LEARNING THEORYIn the process of experiments development, we reviewed the recent literature of engineeringeducation about laboratory courses. We found that some universities have stand-alonecourses
optimize robots tocompete in a “Capture the Flag” style game. This paper will describe the course content andsummarize assessment results from the Fall 2010 pilot course.IntroductionIn Fall 2010, Harvey Mudd College began offering a new core curriculum with more electivity,including, for the first time, an elective in the fall semester of the freshman year. Most existingelectives have prerequisites and are not aimed at first-semester students. As part of thiscurriculum revision, HMC faculty have created a variety of new courses tailored to incomingfreshmen. The authors have recently completed teaching one of these courses, titled E11:Autonomous Vehicles, which offers an interdisciplinary hands-on introduction to engineeringmotivated by a robot
AC 2012-4629: NETWORK-BASED DATA COLLECTION FOR A PROJECT-BASED FRESHMAN CLASSDr. Samuel Bogan Daniels, University of New Haven Dr. Daniels is an associate professor of mechanical engineering with more than 20 years of experience teaching laboratory classes. He also teaches in the multidisciplinary engineering foundation spiral cur- riculum at the University of New Haven. Research interests are in engineering education and renewable energy systems.Dr. Cheryl Q Li, University of New Haven Dr. Cheryl Qing Li joined University of New Haven in the fall of 2011, where she is a senior lecturer of the Industrial, System & Multidisciplinary Engineering Department. Dr. Li earned her first Ph.D. in Mechan- ical
AC 2011-792: THIRTY YEARS OF RUBE GOLDBERG PROJECTS: ASTUDENT-DRIVEN LEARNING LABORATORY FOR INNOVATIONR. William Graff, LeTourneau University R. William Graff is a professor in the school of Engineering and Engineering Technology at LeTourneau University, where he has taught since 1975. He received his B.S., M.S., and Ph.D. degrees from Purdue University in electrical engineering. Prior to joining the faculty at LeTourneau, he was assistant professor of electrical engineering at Drexel University for six years, and then at Wilkes College for two years. His professional interests include antennas, microwaves, plasmas, teaching, and ethics.Paul R. Leiffer, LeTourneau University PAUL R. LEIFFER, PhD, PE Paul R
From the Proceedings of the 2008 meeting of the American Society of Engineering Education Session 3426 Educational Particle Image Velocimetry Interactive Experiment Suites Murat Okçay PhD and Bilgehan Uygar Öztekin PhD Interactive Flow Studies Abstract: Laboratory experience is an essential component of teaching Fluid Mechanics. Hands-on teaching methods provide a lasting understanding of the fluid flow principles. Particle Image Velocimetry (PIV) has become a very powerful technique for studying fluid mechanics. Unfortunately very high price
2006-1293: A PROPOSED PARTICLE IMAGE VELOCIMETRY (PIV) SYSTEMFOR INSTRUCTIONAL PURPOSES IN A MODERN MECHANICALENGINEERING UNDERGRADUATE LABORATORY PROGRAMAfshin Goharzadeh, The Petroleum Institute AFSHIN GOHARZADEH, Ph.D., is an assistant professor of mechanical engineering at the petroleum Institute. An expert in experimental fluid mechanics, Dr. Goharzadeh obtained his Ph.D. at the University of Le Havre in France (2001). After his Ph.D. he joined the prestigious Max Planck Institute for Marine Microbiology in Bremen (Germany) as scientific researcher. He characterized experimentally the flow at water-sediment interface. Using the Particle Image Velocimetry (PIV) and Refractive Index
precise moment and opportunity when the engineeringtechnology lesson can be enlivened and saved from failure and when the instructor canprovide the greater lesson to the student which, in the words of the non-engineer WinstonChurchill is: never give up, never give up, never give up! This paper explores thestrategy of turning a lab experiment failure into an engineering technology learninglesson that will not soon be forgotten by the engineering technology student.Background and IntroductionAny Instructor or Teaching Assistant has likely had the experience of starting anengineering laboratory experiment only to find that the experiment does not workcompletely. This can be true even when the experiment “…worked a minute ago” duringthe trial test
neighboring and Asian countries with verydiverse educational and cultural backgrounds. Teaching engineering sciences in such a new andculturally diverse environment introduces many opportunities for innovation. However, there aremany challenges that are unique to TAMUQ. Because of their varied backgrounds and pre-college educational experience, students find it more difficult to link classroom theory withphysical results and applications. Integration and application of coursework from one class to thenext has also proven difficult.Learning Thermo-Fluid materials for many engineering students can be daunting, no matter theirprevious background. Thermo-Fluid laboratories are often the first place students have a chanceto make the physical real-world
is currently serving as PI on a NSF grant on designing remote laser laboratory for teaching techniciansDon Engelberg, Queensborough Community College Don Engelberg is a Professor of Physics at Queensborough Community College of the City University of New York. His research interests include nuclear physics, laser physics, and education. He was awarded several NSF grants and is currently serving as PI on a NSF grant in laser physics education.Alex Flamholz, Queensborough Community College Alex Flamholz is an Assistant Professor of Physics at Queensborough Community College of the City University of New York. His research interests include bio-physics, electronics, and education. He
began consideration of a mechanical properties laboratory in 1992. Thestudy of the mechanical behavior of materials was an important part of many departmentalcurricula; however, departments did not have the resources to finance instructional facilities withfirst-class equipment. Typically, experiments were conducted in facilities that were heavily used,did not allow hands-on experience, and incorporated equipment that was old or borrowed fromresearch programs. The usual format was a teaching assistant conducting the experiment while agroup of students watched. Equipment was often located in a research setting and the tests weredifficult to observe. The primary need was an introductory laboratory that would allow studentsaccess to quality
curricular material, measurement of learning gains, and measurement ofchanges in student attitude toward laboratory work. In this paper we discuss the laboratoryhardware, the laboratory procedure, and typical results of using the tank draining hardware.Broad Goals The tank draining exercise provides a laboratory experience to teach students abouttransient, incompressible flow. Draining of a tank is one of the few practical applications oftransient flow that can be analyzed at the level of fluid mechanics knowledge typical ofundergraduate engineering students. Mass conservation is applied to the tank to relate the changein height of the free surface to the exit velocity from the hole in the side of the tank. The tankdraining experiment also
by the State of Florida. Dr. Choi has genuine dedication in teaching and has earned a sustained record of excellence in it. His student evaluations have been among the best in his department and his college consistently. He has taught a wide spectrum of courses. His favorite ones include microprocessor applications, linear control systems, electromagnetic field applications, and capstone design projects. He has published his work in engineering education conferences regularly. He has received several teaching awards and was listed in the 2003-2004 Who’s Who Among American Teachers. Dr. Choi’s research interests include embedded control systems and computational algorithms. He has published over thirty papers