Paper ID #33746Critically Quantitative: Measuring Community Cultural Wealth on SurveysDaiki Hiramori, University of Washington Daiki Hiramori is a Graduate Research Assistant at the Center for Evaluation & Research for STEM Equity (CERSE) at the University of Washington. His research interests include quantitative methodology, queer and feminist studies, sexuality and gender stratification, demography of sexual orientation and gender identity, and Japanese society. In addition to an MA in Sociology and a Graduate Certificate in Feminist Studies from the University of Washington, he holds a BA in Sociology with a minor
, workshop handout “A formula for motivation: M = E + V – C,” James Madison University, 2018. [Online]. Available: https://www.aacu.org/sites/default/files/files/STEM15/EVC%20_formulaandsourceshand out%20AACU%20F15%20final%20version.pdf.[21] L. Eby, T. Allen, S. Evans, T. Ng, and D. DuBois, “Does mentoring matter? A multidisciplinary meta-analysis comparing mentored and non-mentored individuals,” Journal of Vocational Behavior, Vol. 72, no. 2, pp. 254–267, 2008.[22] C. Halupa and M. Henry, “Using VineUp to match students with alumni industry mentors in engineering: a pilot study,” International Journal of Higher Education, Vol. 4, no. 4, pp. 105-112, 2015.[23] M. Dagley, N. Ramlakhan, C. Young, and M
in academia and research, broaden my knowledge base, engage in evidence-based practices to promote the quality of life, and ultimately be an avid contributor to the world of academia through research, peer reviews, and publications. c American Society for Engineering Education, 2019 Negotiating Identity as a Response to Shame: A Study of Shame within an Experience as a Woman in EngineeringAbstract: This research paper presents the findings of an interpretative phenomenologicalanalysis (IPA) case study of the experience of shame in a woman engineering student. Ouroverarching research question that framed this study was: How do woman students with multiplesalient identities
sociocultural dimensions of engineering education.Andrew Elby, University of Maryland, College Park Andrew Elby’s work focuses on student and teacher epistemologies and how they couple to other cognitive machinery and help to drive behavior in learning environments. His academic training was in Physics and Philosophy before he turned to science (particularly physics) education research. More recently, he has started exploring engineering students’ entangled identities and epistemologies.Dr. Ayush Gupta, University of Maryland, College Park Ayush Gupta is Assistant Research Professor in Physics and Keystone Instructor in the A. J. Clark School of Engineering at the University of Maryland. Broadly speaking he is interested in
returning students may feel out of place or unwelcomedin their graduate programs1, 5. An earlier qualitative study of engineering doctoral returners bytwo members of our team7 supports these findings and suggested returners face a number ofcosts, including those related to finances, balance of work and personal responsibilities, theirlevel of academic preparedness, and adapting to the cultural environment of engineering PhDprograms.Despite these challenges, having extensive prior work experience before pursuing PhD workmay prove to be valuable for returners’ academic work. Returners have a wide range of pastpersonal and professional experiences, which may include work in education, industry,government, or the military, that can inform their
themselves as engineers and the work that engineering entails.The overarching goal of our research agenda is to facilitate future research aimed atunderstanding how working in teams influences the emergence of professional identity andcapability among undergraduate engineering students. The purpose of this study is to advancedevelopment of a tool, the Within-team Task Choice Survey (WTCS), for collecting data abouthow students spend time, select tasks, and envision their role in the context of a team-baseddesign project.Literature Review: Team-based learning in engineering designWidely used as a pedagogical strategy for developing technical skills and professionaldispositions, team-based learning is commonly leveraged in design courses in chemical
link these surveystogether. As a result, the student’s identity is not known, but the pre/post surveys can be linkedfor the same student. Three instruments (1-3, below) comprised the survey and tookapproximately 5-10 minutes to complete. Each section of the survey provided data tooperationalize study variables identified in the PEERSIST model (Fig. 1), namely, engineeringself-efficacy, engineering identity, institutional identity, and supports and barriers.(1) Engineering Self-Efficacy Beliefs. Three items comprised this variable, adapted for this studyfrom Lent et al. [19]: confidence to (1) pass all remaining technical courses in the engineeringmajor, (2) pass all remaining design courses in the engineering major, and (3) graduate with
Paper ID #12803Comparing Disparate Outcome Measures for Better Understanding of Engi-neering GraduatesMs. Samantha Ruth Brunhaver, Arizona State University Samantha Brunhaver is an Assistant Professor of Engineering in the Fulton Schools of Engineering Poly- technic School. She completed her graduate work in Mechanical Engineering at Stanford University. She also has a B.S. in Mechanical Engineering from Northeastern University. Her research examines the career decision-making and professional identity formation of engineering students, alumni, and prac- ticing engineers. She also conducts studies of new engineering
Engineering Education at Purdue University. Her research focuses what factors influence diverse students to choose engineering and stay in engineering through their careers and how different experiences within the practice and culture of engineering foster or hinder belongingness and identity development. Dr. Godwin graduated from Clemson University with a B.S. in Chemical Engineering and Ph.D. in Engineering and Science Education. She is the recipient of a 2014 American Society for Engineering Education (ASEE) Educational Research and Methods Di- vision Apprentice Faculty Grant. She has also been recognized for the synergy of research and teaching as an invited participant of the 2016 National Academy of Engineering
enrollment and persistence in college STEM fields using an expanded P-E fit framework: A large-scale multilevel study.,” J. Appl. Psychol., vol. 99, no. 5, pp. 915–947, 2014.[13] K. E. Winters and H. M. Matusovich, “Career goals and actions of early career engineering graduates,” Int. J. Eng. Educ., vol. 31, no. 5, pp. 1226–1238, 2015.[14] J. P. Martin, D. R. Simmons, and S. L. Yu, “Family roles in engineering undergraduates’ academic and career choices: Does parental educational attainment matter?,” Int. J. Eng. Educ., vol. 30, no. 1, pp. 136–149, 2014.[15] R. L. Kajfez, K. M. Kecskemety, E. S. Miller, K. E. Gustafson, and K. L. Meyers, “First- year engineering students’ perceptions of engineering
campusculture [9], [10]. In these studies, campus culture considered (1) classroom experiences, (2)faculty-staff relationship, (3) institutional support services, (4) peer interactions, (5) studenteffort to learn, (6) goal development and management, and (7) institutional commitment. As aresult, we integrated these components of campus culture into our understanding of institutionalclimate to ground our data collection approach and provide a helpful framework for uncoveringways in which institutional climate can impact how a Black HBCU undergraduate engineering orcomputing student navigates their post-graduate planning and decision-making.Identity and SuccessUnderstanding how an institution’s culture and climate support students’ personal identities is
. Amelink is the Director of Graduate Programs and Assessment in the College of Engineering Virginia Page 26.506.1 Tech and affiliate faculty in the Department of Engineering Education and the Department of Educational Leadership and Policy Studies at Virginia Tech. c American Society for Engineering Education, 2015 Developing the Postsecondary Student Engagement Survey (PosSES) to Measure Undergraduate Engineering Students’ Out-of-Class Involvement Abstract A large body of literature focuses on the importance of student involvement in all aspects ofcollege for achieving
study ofLatino/a adolescent students in that “students’ funds of knowledge should be the starting point forengineering education” [p. 14]. Second, funds of knowledge can help guide the people whosupport and mentor first-generation college students—from student service staff to professors—toidentify opportunities to help these students excel.AcknowledgmentsThis work was supported through funding by the National Science Foundation under EAGERGrant No. (1734044). Interview data of first-year engineering students came from fundingsupported by the National Science Foundation under CAREER Grant No. (1554057). Anyopinions, findings, and conclusions or recommendations expressed in this material are those of theauthor(s) and do not necessarily reflect
Paper ID #22387Characterizing Students’ Intercultural Competence Development Paths Througha Global Engineering ProgramMs. Kirsten Davis, Virginia Tech Kirsten Davis is a doctoral candidate in the Department of Engineering Education at Virginia Tech, where she also completed her master’s degree in Higher Education. She is the graduate assistant for the Rising Sophomore Abroad Program, a global engineering course and study abroad program for first year engi- neering students. Her primary research interests are engineering study abroad, developing intercultural competency in engineering students, and international higher
factors influence diverse students to choose engineering and stay in engineering through their careers and how different experiences within the practice and culture of engineering foster or hinder belongingness and identity development. Dr. Godwin graduated from Clemson University with a B.S. in Chemical Engineering and Ph.D. in Engineering and Science Education. She is the recipient of a 2014 American Society for Engineering Education (ASEE) Educational Research and Methods Di- vision Apprentice Faculty Grant. She has also been recognized for the synergy of research and teaching as an invited participant of the 2016 National Academy of Engineering Frontiers of Engineering Ed- ucation Symposium and 2016 New Faculty
Future Careers Over Time,” in Frontiers in Education Conference, 2018.[17] C. D. McGough, “A Mixed Methods Study on Mid-Year Engineering Students’ Perceptions of their Future Possible Careers,” 2019.[18] C. McGough, A. Kirn, and L. Benson, “Different Perceptions of Future Careers for Mid- Year Engineering Students,” J. Eng. Educ.[19] C. McGough, A. Kirn, and L. Benson, “Work in Progress : Developing a Quantitative Instrument for Measuring Undergraduate Engineering Students ’ Future Time Perspectives,” in American Society for Engineering Education, 2016.[20] A. Kirn and L. C. Benson, “Engineering Students’ Perceptions of Problem Solving and their Future,” J. Eng. Educ., 2018.[21] H.-F. Hsieh and S. E
Paper ID #21724Validity Evidence for the SUCCESS Survey: Measuring Non-Cognitive andAffective Traits of Engineering and Computing StudentsMr. Matthew Scheidt, Purdue University, West Lafayette Matthew Scheidt is a Ph.D. student in Engineering Education at Purdue University. He graduated from Purdue University with a B.S. in Mechanical Engineering, and The Ohio State University with a M.S. in Mechanical Engineering with a focus in Ultrasonic Additive Manufacturing. Matt is currently part of Dr. Allison Godwin’s STRIDE (Shaping Transformative Research on Identity and Diversity in Engineering) research group at Purdue.Dr
populations as well as many technical and non-technicalextracurricular opportunities. The survey will be sent to all undergraduate engineering studentsclassified as sophomores or juniors in the semester of the initial survey administration. The surveywas piloted with a group of undergraduate and graduate engineering students at this university infall 2019 and early spring 2020. The initial survey administration was conducted in spring 2020.Survey Measures. The survey will capture the types and extent of student involvement in variouscategories of extracurricular activities [25]–[27]. Students will select their involvements from alist of types of involvement (e.g., ambassador program, engineering/technical/design, professionalsociety, identity-based
Dina Verd´ın is an Engineering Education graduate student at Purdue University. She completed her under- graduate degree in Industrial and Systems Engineering at San Jos´e State University. Her research interest focuses on the first-generation college student population, which includes changing the perspective of this population from a deficit base approach to an asset base approach.Hank Boone, University of Nevada - Reno Hank Boone is a Graduate Research Assistant and Masters Student at the University of Nevada, Reno. His research focuses on First Generation engineering college students’ engineering identity, belonging- ness, and how they perceive their college experience.He is also on a National Science Foundation
. Doverspike, and R. P. Mawasha, “Predicting Success in a Minority Engineering Program,” J. Eng. Educ., vol. 88, no. 3, pp. 265–267, Jul. 1999.[42] T. E. Murphy, M. Gaughan, R. Hume, and S. G. Moore, “College Graduation Rates for Minority Students in a Selective Technical University: Will Participation in a Summer Bridge Program Contribute to Success?,” Educ. Eval. Policy Anal., vol. 32, no. 1, pp. 70–83, Mar. 2010.[43] M. W. Ohland and G. Zhang, “A Study of the Impact of Minority Engineering Programs at the FAMU-FSU College of Engineering,” J. Eng. Educ., vol. 91, no. 4, pp. 435–440, Oct. 2002.[44] “Solórzano and Yosso - Critical Race Methodology Counter-Storytelling as.pdf.” .
: Specialization vs. Standardization in the Factory Model of Engineering EducationAbstractThis research paper employs data from the study of a novel next-tier broadening participationaccess program to illustrate the challenge of maintaining awareness and understanding of ourstudents as individuals within institutional systems of assessment and record-keeping that treatall students as the same in the interests of standardization. These standardized practices areintended to aid in the production of high numbers of engineering graduates—not unlike a factorythat takes in raw materials in the form of students and outputs finished goods in the shape ofengineering graduates. This factory model of engineering education, like any high
—orbelieves, as we do—that all of the EOP competencies are important for students toexperience by the time they graduate, it behooves us to think about how to deliver thesecompetencies across a curriculum.The engineering curriculum in which this study occurred is designed to provide at least onePjBL class each semester. We envision a delivery of different subsets of the EOP frameworkcompetencies across the project-spine to ensure meaningful engagement is achieved for allcompetencies. This approach allows for at least two synergistic pedagogical and researchopportunities: 1) emphasizing a different subset of EOP competencies in different PjBLcourses allows students to see the interdependencies between those competencies in moredepth; and 2) spreading
joining ASU he was a graduate student research assistant at the Tufts’ Center for Engineering Ed- ucation and Outreach. c American Society for Engineering Education, 2019 Work in Progress: Exploring ‘Ways of Thinking’ of Interdisciplinary CollaboratorsAbstractCalls have been made for novel ways of thinking about engineering education research. Buildingon an earlier qualitative inquiry, this work in progress study examined the number and nature offactors underlying the constructs of futures, values, systems, and strategic thinking within thecontext of interdisciplinary engineering education research. Exploratory factor analysis of surveydata (n =111) supported a correlated
Group since 2010, working on a longitudinal study of over 200 graduate students in the life sciences.Her major research project, the National Science Foundation (NSF)-funded ”FIRSTS (Foundation for Increasing and Retaining STEM Students) Program: A Bridge Program to Study the Development of Science Identities,” examines mentoring relationships, identity development, and the role of outside-of-college commitments in persistence among students coming to STEM majors with limited financial support.Dr. Christopher Wagner, The College of New Jersey Dr. Wagner is currently Associate Professor of Biomedical Engineering (BME) at The College of New Jersey (TCNJ), where he has taught students at all levels of the curriculum
capstone design project, but will help build their identity as engineers and better preparethem for professional practice 41, 42. Research points to several contributing factors which play arole in improving student learning during engineering design experiences, including the impactof active, project-based, and hands-on learning methodologies, and the development of a sense ofcommunity and a peer support network23, 43-45. Cooperative learning approaches that are hands-on and interactive are particularly appealing to underrepresented students 46-49. First-yearengineering design was highlighted as one of six key areas in engineering education innovationat the 2011 ASEE Annual Conference 50. Pioneered in the 1990’s and implemented in severalNSF
. Jonassen, J. Strobel, and C. B. Lee, “Everyday Problem Solving in Engineering: Lessons for Engineering Educators,” J. Eng. Educ., vol. 95, no. 2, pp. 139–151, Apr. 2006.[25] J. W. T. Kan and J. S. Gero, Quantitative methods for studying design protocols. Springer, 2017.[26] A. Kirn and L. Benson, “Engineering Students’ Perceptions of Problem Solving and Their Future,” J. Eng. Educ., vol. 107, no. 1, pp. 87–112, Jan. 2018.[27] A. F. McKenna, “An investigation of adaptive expertise and transfer of design process knowledge,” J. Mech. Des. Trans. ASME, vol. 129, no. 7, pp. 730–734, Jul. 2007.[28] R. M. Marra, B. Palmer, and T. A. Litzinger, “The Effects of a First-Year Engineering Design Course on
different groups on the map, shown inFigure 3. This will include recruiting students from different parts of the maps in order to conductlongitudinal interviews about engineering pathways and the negotiation of identities as engineers.This corresponding qualitative work will build upon this study’s existing quantitative results andwill inform additional studies with the insights recorded.ConclusionThis paper described the key model parameters that researchers must consider in using a newstatistical method, Topological Data Analysis (TDA). We also presented how TDA can be usefulto characterize students’ latent diversity from a survey study of 3,711 first-year engineeringstudents’ incoming attitudes, beliefs, and mindsets at 32 ABET-accredited
that involved combining fiveeducation best practices of recruitment, formal mentoring through peer mentors, summer campengineering math preparation and workshops, academic year stipends, and summer internships atlocal and regional companies.The Just in Time Math (JITM) strategy was implemented to increase the interaction betweenfreshmen and engineering faculty and peers during the first semesters of study. As a result, moreengineering students have shown greater enthusiasm for the field of engineering which resultedin better retention and graduation rates. The JITM course included lecture, lab and recitationcomponents and an application-oriented, hands-on approach. The JITM course addressed mathtopics specifically used in the core entry-level
, become an even smaller group ofindividuals who are able to move on in the engineering major after the course is over.Data collection and analysisThe study follows a quasi-experimental, multi-method design to answer the research question.We utilize two quantitative measures along with semi-structured interviews of a sub-sample ofparticipants in order to triangulate the results of the quantitative measures. The two quantitativemeasures consist of an observational protocol to measure instruction and student participation,and a survey instrument designed to measure students’ sense of community in the classroom.First, the Classroom Observation Protocol for Undergraduate STEM (COPUS) [9] is a protocoldesigned for use in university settings to generate