•Understand and Respect Other Professionals •Research Information Information and •Identify Relevant Information Communication Literacy •Express and Receive Ideas Clearly •Write Concisely •Generate New Ideas Critical Thinking •Think Critically •Think and Act Independently •Organize Things Effectively •Self-Reflection Self-Management Skills •Manage Time and Meet Deadlines •Be Punctual to Class or MeetingsFigure 1. Generic Skills Perception Questionnaire Factors
Paper ID #33572”You Could Take ’Social’ Out of Engineering and Be Just Fine”: AnExploration of Engineering Students’ Beliefs About the Social Aspects ofEngineering WorkMr. Robert P. Loweth, University of Michigan Robert P. Loweth is a PhD candidate in the Department of Mechanical Engineering at the University of Michigan. His research explores how engineers engage and include diverse perspectives in their engineer- ing work. His findings have informed the development of tools and pedagogy that support engineering students in investigating and reflecting on the broader societal contexts and impacts of engineering ac
learning, and engineering communi- cation. American c Society for Engineering Education, 2021 I Wish I Would Have Known Engineering Student's Reflections on Challenges and Support Experienced in Graduate ProgramsAbstractThe purpose of this research paper is to characterize the experiences of engineering doctoralstudents as they reflect upon what they wish they had known before beginning their program.Engineering graduate enrollment rates have been declining over the past few years, while studentwell-being issues are rising. This work is part of an overarching investigation examining thephenomenon of
instrumentation is to drive ongoing cycles of continuousimprovement in teaching with a focus on transforming student learning. Owing to theongoing, dynamic practices of reflective educators, pedagogy and plans iterativelyevolve. These changes in practice exist in a complex environment that has the potential toprofoundly impact students’ ability to engage with and internalize content. Given thisenvironment, instrumentation is deployed to collect data in a process of developmentalevaluation while proactively responding to student learning and development throughdisaggregated data. This work equips educators with information to support thedevelopment of prototypes and innovations that strive toward providing undergraduatestudents with authentic, deep, and
asked to voluntarily share their experiences in the form of writtenreflections as a part of an open-response survey at the end of each semester. To understand studentexperiences, we conducted a thematic analysis of student reflections after they completed theirfirst semester. We analyzed reflections and we discussed our findings through the lens of thesituated learning theory, specifically addressing its three key tenets: authentic context, socialinteraction, and authentic learning.IntroductionNumerous future jobs will involve science, technology, engineering, and mathematics (STEM)knowledge. As such, it is important to attract students into STEM fields and to retain them asSTEM majors. Residential Learning Communities (RLCs) can help with both
have toldme in the past that it is hard for them to listen to a woman because ... ‘it’s like ... in my mind it’sstill set that I know what I’m doing because I’m the guy ...’” [10, p. 281]. While she successfullygraduated with a mechanical engineering degree, Sandra reflected, “I can understand where theyare coming from ‘cause maybe that’s the culture in his family and where he’s from” [10, p. 281].Put simply, Sandra’s friend had deeply held beliefs that women were less knowledgeable thanmen; nevertheless, her male friend’s beliefs were his issues alone and not a reflection of her orwomen as engineers. The idea that to belong in engineering is to be male is embedded in the fielddue to the historical traditions of being a masculine-oriented
acrucial, albeit often overlooked, element of promoting the success, persistence, and retention ofminority students within STEM disciplines [11]. Furthermore, recent studies have highlightedthe relationship between race and gender (for example) in STEM identity development,demonstrating the importance and effectiveness in understanding identity in shaping Blackstudent experiences, particularly regarding student engagement as well as barriers to successwithin STEM majors [12] [13].Regarding HBCUs, these institutions seek to provide and preserve cultural aspects that are notgenerally reflected or offered to minoritized students within Predominately White Institutions(PWIs) and broader society. In reviewing the impact of institutional climate on
currently completing a PhD in Engineering Education under Dr. Dringenberg. His research interests include exploring ideological beliefs as a reflection of tech culture. In his free time, he enjoys watching hockey, writing about programming languages, and playing video games.Dr. Emily Dringenberg, Ohio State University Dr. Dringenberg is an Assistant Professor in the Department of Engineering Education at Ohio State Uni- versity. She holds a B.S. in Mechanical Engineering (Kansas State ’08), a M.S. in Industrial Engineering (Purdue ’14) and a Ph.D. in Engineering Education (Purdue ’15). Her team, Beliefs in Engineering Re- search Group (BERG), utilizes qualitative methods to explore beliefs in engineering. Her research
AbstractIn this research paper, we explore student responses to Utility Value Interventions in staticscourses. Introductory engineering mechanics courses (e.g., statics, dynamics) are critical pointswithin a curriculum, and student performance in these courses can have a strong influence onfuture success. And while these courses are often thought of as “weed out” courses, the ubiquityof these courses for engineers is what makes them an important place for students to develop themotivation to persist through their engineering education. One particularly promising tool for thisdevelopment has been Utility Value Interventions (UVIs) in which students are given opportunitiesto reflect on how their coursework aligns with their lives through short writing
]. Oehlberg, Willett, andMackay suggest this may also provide an entry point for new makers, who can dissect and buildupon other’s work to kickstart their own making practice [6].3 MethodologyIn this study, 31 semi-structured interviews with 14 different participants were conducted at twopublic U.S. universities (Big City U & Comprehensive U). Each university has campusmakerspaces with rapid prototyping equipment (e.g. 3D printers) and typical manufacturingequipment. Interviews were conducted on the campuses in 2019 prior to the move to remotelearning, and thus, reflect students’ more “typical” use of online activities in their learningexperiences. All interviewers were audio-recorded and later transcribed. There was a total of fourinterviewers
through the processes of social categorization, social identification, and social comparison. These processesFigure 1. System of analysis and theoretical framing considered result in a division of in-groups and out-groups which helpsenhance self-image. Social identities can be positive or negative; the latter reflect elements thatdo not comply with societal expectations. Because of the multiple spaces where we
citationpractices belie a more complex system of relationships. Historically, they have established powerrelationships among authors, ideas, and larger sociotechnical systems within the university[26].Our citations reflect our reading practices while establishing field boundaries and contours andultimately funneling into the larger economy of the university. They undergird this universityeconomy in a number of ways: (a) we form communities of practice/discourse communities inhow we cite, excluding and including particular ways of knowing; (b) we give particular ideaspower and visibility in how we cite; (c) we decide whose work matters, who should be tenuredand promoted, who belongs; and (d) we teach ethics and intellectual property through citations.These
. American c Society for Engineering Education, 2021 Identifying Signature Pedagogies in a Multi-Disciplinary Engineering ProgramAbstractThis work-in-progress is part of a larger research and evaluation project designed to realignprogram goals with teaching and learning practices in a large, multi-disciplinary engineeringscience program at a research-oriented Canadian university. The ultimate goal of this work is todefine and develop a set of key teaching and learning practices that reflect program goals andfuture directions. Drawing from Shulman’s work on signature pedagogies, which are defined asthe modes of teaching and learning that are unique to a particular discipline or
performance criterion considered, often withanchored details at each level [16]. For subjective or summative artifacts, like reflective essays ordesign reports that may not have specific required components, a holistic rubric may align betterwith the desired outcomes. Often, a holistic rubric has performance criteria defined within asingle rating system for the entire work and doesn’t provide much performance feedback as partof the rubric itself [16]. For either type of rubric, performance criteria must be developed. Forthis project, students would not be gaining any feedback and would be scored based on theirapplication, placing it in a summative category rather than formative. Student essays would nothave specific required components and instead
]. Previous studies suggest thatstudent self-reflection on their contribution to project activities [2] and required reporting bystudents about other team members’ contributions [11, 17, 18] can increase overall teamaccountability.Strategic formation of student teams is a critical step in establishing effective conditions forteam-based learning. Ensuring a fair distribution of students from different backgrounds in termsof technical skills, prior educational experiences, and demographic characteristics helps to ensureteam members bring different perspectives to the project [19]. Prior studies of team-basedlearning report the use of screening surveys, established personality or disposition inventories(e.g., Kolb Learning Style Inventory, Myers-Briggs
more complicated. In the case of engineering, it has been argued that the assumptionof the rigor and prestige involved in the pursuit of an engineering major imposes additionalpressures related to competition and achievement, which could reflect in poorer mental health.Furthermore, such pressures might be heightened for underrepresented groups that keep facingcumulative challenges while pursuing an engineering degree. While some recent work hasexplored stress and mental health indicators of engineering undergraduates, comparisons of suchindicators across disciplines are scarce. This study examines the differences in wellbeingindicators, perceptions of stress, competition, and achievement between undergraduates inengineering, non-engineering
from similar backgrounds (0.40) d. Completing my STEM degree will help combat stereotypes about people who share my social identities (0.58)Overall, several of our initial findings are consistent with Yosso’s CCW framework but suggestsome important ways in which the framework can be further developed to reflect the experienceof our survey participants. First, our findings suggest that aspirational capital consists of threesub-dimensions: external-aspirational capital is encouragement and motivation provided byfamily and other close connections, internal-aspirational capital is internal drive and motivationto persist, and resistant-aspirational capital is the drive to succeed in order to serve as a rolemodel for other
Engineering Education Research: Reflections on an Example Study,” Journal of Engineering Education, vol. 102, no. 4, pp. 626–659, 2013, doi: 10.1002/jee.20029.[10] J. Walther et al., “Qualitative Research Quality: A Collaborative Inquiry Across Multiple Methodological Perspectives,” Journal of Engineering Education, vol. 106, no. 3, pp. 398– 430, 2017, doi: https://doi.org/10.1002/jee.20170.[11] S. Tan, “The Elements of Expertise,” Journal of Physical Education, Recreation & Dance, vol. 68, pp. 30–33, Feb. 1997, doi: 10.1080/07303084.1997.10604892.[12] C. Aaron, E. Miskioglu, K. M. Martin, B. Shannon, and A. Carberry, “Nurses, Managers, and Engineers – Oh My! Disciplinary Perceptions of Intuition and Its Role in
wealth,” Race Ethn. Educ., vol. 8, no. 1, pp. 69–91, 2005.[18] C. G. Vélez-Ibáñez and J. B. Greenberg, “Formation and transformation of funds of knowledge among U.S.-Mexican Households,” Anthropol. Educ. Q., vol. 23, no. 4, pp. 313–335, 1992.[19] A. L. Pawley and C. M. L. Phillips, “From the mouths of students: Two illustrations of narrative analysis to understand engineering education’s ruling relations as gendered and raced,” presented at the ASEE Annual Conference, Indianapolis, IN, 2014.[20] J. Walther, N. W. Sochacka, and N. N. Kellam, “Quality in interpretive engineering education research: reflections on an example study: Quality in interpretive engineering education research,” J. Eng. Educ., vol. 102, no. 4, pp
time to rest, affecting their mental health.Future work will focus on assessing other type of support interventions that were implementedduring the outbreak of COVID-19. Considering the perceived need for a balance academic load,we also plan to explore ways to improve curriculum planning and assessment patterns inengineering education. During the second semester of 2020, we collected students’ self-reports oftime-on-task to identify peaks of academic workload in specific weeks and subjects. Furtherstudies will be conducted to understand how these self-reported data could help teaching staff andstudents reflect about course planning and time management, respectively.AcknowledgementsThis work was supported by CORFO under grant no. 14EN12-26862
- Networking among postdocs Networking - Identifying collaborators Personal Reflection - Identifying professional interests and values - Project assignments allocation Project Management - Project financial management, funding allocation - Not just doing, but finish projects and publications - Giving guest lectures in classesTeaching and Learning - Teaching a course - Developing teaching philosophy/teaching dossier - Managing deliverables to meet the deadline Time Management - Ability to work under time pressurediscipline were generated and appended to the
groups (SA4)When students reflected on what they needed from their study groups, some trends were similarto those of lab groups. For example, 21.3% of students prioritized individual accountability intraditional learning while only 14.1% did so in remote learning. This downward trend is similarto what students said about their lab groups. With regard to individual accountability, whilestudents made more frequent comments about interpersonal and social skills in remote learningwith regard to their lab groups, the increase in these types of comments in their study groups wasmuch larger. Students in remote learning mentioned interpersonal and social skills with respectto their peer groups at over twice the frequency (22.7%) of students in
influencedtheir grade, (3) impressions of other members in the study group, (4) opinions about the mostvaluable and least helpful parts of the study group and (5) reflections on how participating in thestudy group changed their confidence in completing the engineering degree and their feelingsabout being a student at ASU. Pseudonyms were given to participants to ensure theconfidentiality of the interview.ResultsThere were 22/50 respondents for the post-survey (response rate of 44%). Of these, 16 could bematched to the pre-survey, due to the fact that some students did not use the same personal codethat they generated on the pre-survey. Of the 16, 14 had been placed in PLSGs, and one hadbeen placed in TARs (one student did not identify a group).Table 2
engineering major's significancein other countries.Theoretical-based coursework is one of the contributing factors of large numbers of first-year E/CSleaving the engineering field [10]. Such coursework makes relating concepts taught in class toreal-world scenarios quite difficult and creates a negative feeling of engineering concepts amongE/CS students. Students tend to enjoy their coursework if they can see the benefits in real-worldapplications and the flexibility to solve real-world problems. E/CS curriculum should be updatedaccordingly to reflect technological advancement in the field. Teaching students, especially first-year students, outdated technologies and innovation could discourage students from continuing intheir majors. Students might
. The earlier in their education engineers are exposed to the layers ofabstraction associated with the leaps from experiment to project and product, the more theywill be able to advance not only their own craft, but the field altogether. The stakeholders whobenefit from a self-reflective engineering force will live comfortably and sustainably, so longas engineers are equipped to recognize all the abstract constraints they face in the design oftheir processes and products.Frameworks like Engineering for One Planet help offset the simple unfathomability ofchallenges on time scales incomprehensible to engineers and their stakeholders today. EOP inparticular takes advantage of the logical conclusion of engineering fields undergoing‘expansive