, University of Houston MIGUEL RAMOS is the Director of Accreditation and Assessment Services for the College of Technology at the University of Houston. His primary focus has been the practical application of assessment and evaluation strategies to enhance educational quality in the college and university. Prior to joining the University of Houston, Dr. Ramos worked as a researcher for the Southwest Educational Development Laboratory, and as an Evaluator for Boston Connects. He earned a Ph.D. in Educational Research, Measurement and Evaluation from Boston College in 2004.William Fitzgibbon, University of Houston WILLIAM FITZGIBBON, III earned his BA and PhD degrees from Vanderbilt University in
Write a report outlining a design strategy and assessing its strengths, weaknesses, and feasibility o Write a report describing functional/technical specifications of the proposed design strategy • Write an end-of-project report presenting the final design, strategy, technical description, and performance assessmentThese outcomes were then used as a template to guide development of the course.In order to achieve both the education and design goals of this course, class periods are Page 12.409.4organized to be approximately half lecture and half laboratory. Lectures and labs are held in thesame
Engineering at Western New England College. Prior to joining WNEC, Dr. Burke was with EM Observables Division of Mission Research Corporation (95 to 2000), he was with the MacNeal-Schwendler Corporation (92-95), with Compact Software (90-92), with the Microwave Electronics Laboratory at the University of Massachusetts (87-90), and with the Hughes Aircraft Corporation (84-86). He received the B.S.E.E. degree from Northeastern University, Boston, MA, in 1984 and the M.S.E.E. degree from the University of California at Los Angeles in 1986, and the Ph.D. degree from University of Massachusetts at Amherst in 1993. Dr Burke’s primary teaching interests are Electromagnetics, High Frequency Circuit
considerations that will reduce the test portion manufacturingcost. This process is calling Design for Testability (DFT). The skills a test engineer should have include mastery of basic circuits includingthe ability to design and troubleshoot them using laboratory equipment as well asAutomatic Test Equipment (ATE). The test engineer should also be able to program(C++, MATLAB, and LabVIEW) and to effectively communicate technical issues to bothproduct marketers (possibly non-technical) as well as product designers (very technical). The high demand of the electronics industry is the main reason for establishingnew classes in universities. Practice based education is one of the many ways the “can dospirit” can be inspire in many students
use in everything from automobiles to remotelysituated data loggers. A balance needs to be struck in offering these courses: basic conceptsmust be conveyed along with skills that will allow students to be productive in future situations Page 14.826.2where they will use these devices. Basic concepts such as interrupts, memory maps and parallelports can be taught in a classroom with accompanying text and laboratory. Many standarddemonstration boards exist that can serve as a vehicle for showcasing these concepts in the lab1.Many courses have been developed with these types of boards2,3,4. What can be lacking in suchan approach is giving the
2006-652: A BLUETOOTH-BASED HANDSET WIRELESS DATA ACQUISITIONSYSTEMDavid Border, Bowling Green State University Page 11.8.1© American Society for Engineering Education, 2006 A BluetoothTM-based Handset Wireless Data Acquisition SystemAbstractAn innovative data acquisition system that is suitable for laboratory work in electricalengineering/computer engineering communication coursework is detailed in this paper. Thework makes use of currently available technologies including a BluetoothTM module in thecommunication path, and a Windows Mobile 2003 PDA as the system handset. Such itemsillustrate important data acquisition and data communication elements that are being
, high-speed signal acquisition and processing for radar command-guidance of supersonic and hypersonic munitions, and advanced PCB packaging techniques. Previously, he was a graduate student with the Ra- diation Laboratory of the University of Michigan where his research focus was on ceramic prototyping techniques, integrated ceramic microwave systems, and applications of metamaterials and photonic crys- tals. He has authored four papers for refereed journals and given many conference presentations on the applications of advanced ceramic fabrication techniques to microwave devices. Dr. Brakora holds 5 US patents and has several unpublished patents and patent applications.Dr. Lihong (Heidi) Jiao, Grand Valley State
introductory-level laboratoryexperiment focused on the analysis of switching-mode DC-DC converters. This experimentwould take place in an analog electronics course as a laboratory component for juniorundergraduate electrical and computer engineering students.Switching mode power supplies have been used in industries and consumer electronics for manydecades. Recently, they have become pervasive in our daily life as many smartphones, portablecomputing devices, and renewable energy systems are using switching mode power converters.Due to the wide acceptance of this technology, a lab component has been added in an analogelectronics course to introduce switching-mode DC-DC conversion.The approach taken is to integrate students’ knowledge and experiences
of students taking anElectrical and Computer Engineering laboratory and discuss the correlations betweentheir performance in the laboratory and their responses to surveys about their pastexperiences and attitudes toward engineering.BackgroundThe ECE sophomore laboratory is the first experience with instructional introduction tothe function and use of electrical test equipment used in the ECE department. Theinstruments include multimeters, oscilloscopes, function generators, DC power supplies,breadboards, resistors, simple logic chips, circuit simulation software, and simple logicprogramming. The course has a common lecture one hour each week, and individual lab
understanding of how these newer materials are affected by long-term use and exposure toadverse conditions. This not only increases general confidence in the ability of the devices to beimplemented into hazardous systems, but also allows for failure analysis to be iterated on infuture designs. Educating students on the importance of reliability testing can be difficult due to thetypical ways students are exposed to devices and systems in classrooms and laboratories.Students, especially at the undergraduate level, are often exposed to devices/systems just afterlearning about them. Laboratory exercises are often geared towards normal system performanceand rarely contain fault analysis. When fault analysis is examined in a classroom environment
Bachelors degree in Electrical and Electronics Engineering from Bangalore University in 2004 and was awarded a Masters of Science degree in Electrical and Computer Engineering from Southern Illinois University Carbondale in 2010. He is currently pursuing his Ph.D. degree in Electrical and Computer Engineering at Southern Illinois University Carbondale and is a Re- search Assistant at Embedded Control Systems Laboratory. His main areas of research includes power electronics and control systems.Aishwarya Vasu, Southern Illinois University Carbondale Aishwarya Vasu received her Bachelor’s degree in Electronics and Communication Engineering from Anna University, Chennai, India in 2006. She received her Master of Science
for Research, Education, and OutreachAbstractAntennas are essential components of wireless devices and systems including cell phones, Wi-Fiaccess points / routers and client devices, military and civilian radars, public safetycommunication systems, and many others. Faculty and students at a teaching-focusedinstitution, Weber State University (WSU), have developed a low-cost, portable, open-sourceantenna pattern measurement system (anTpaTT). In this project, a team of undergraduateengineering students at a research university, Virginia Tech (VT), are operating and enhancingthe system. The enhanced anTpaTT system and the project itself provide opportunities for hands-on learning, remote laboratory exercises, and experiential and / or project
specializing in energy systems are introduced to powerelectronics in their third year at our university. The introductory course, entitled Fundamentals ofElectrical Energy Systems (FEES), covers DC/DC converters, DC/AC converters, three-phasecircuits, as well as the basics of transformers and electrical machines. The bulk of the coursematerial, however, is dedicated to switch-mode power conversion. The majority of lectures andtutorials are dedicated to explaining relevant concepts such as switch realization, pulse-widthmodulation (PWM), harmonics/power quality, and continuous/discontinuous conduction modes.Four out of a total of six laboratory sessions are centred around power electronic circuits.Prior to Fall 2018, student feedback consistently
Simulink and dSPACE control platform. Two 200W DC machines rated at 40VDC and4000 rpm were used. The DC machines were controlled using a pulse width modulated (PWM)power converter. This project was part of an undergraduate research supported by NSF and theUniversity of Minnesota Research Experiences for Undergraduates (REU) program.I. IntroductionThe objective is to develop a system that emulates a wind turbine. Previous efforts in thisdirection have employed separately excited DC machines1,2 with power ratings in the multiplehorsepower range. The intended application of the system described in this paper is forundergraduate laboratory courses. Thus, a system that works at lower voltages is desired.Existing laboratory equipment such as DC
National Laboratories in Albuquerque, NM. He directs the KSU Medical Com- ponent Design Laboratory, a facility partially funded by the National Science Foundation that provides resources for the research and development of distributed medical monitoring technologies and learning tools that support biomedical contexts. His research focuses on (1) plug-and-play, point-of-care medi- cal monitoring systems that utilize interoperability standards, (2) wearable sensors and signal processing techniques for the determination of human and animal physiological status, and (3) educational tools and techniques that maximize learning and student interest. Dr. Warren is a member of the American Society for Engineering Education and
supplemental hardware laboratory without significant variability1 (for example, jitter).An undergraduate curriculum in digital communications has been developed that couplesthe traditional analytical approach and text with the simulation of the system asinterconnected models (tokens) for design and analysis.One illustration of this concept is that the requisite analytical expressions provide anearly automatic solution to the spectrum of a modulated signal, but are these spectrareally what occurs? Another illustration is that the relative bit error rate (BER)performance of the simple single point sampler and the more complex matched filter orcorrelation receiver in baseband rectangular pulse amplitude modulation (PAM) withadditive white Gaussian noise
role in the development and implementation of the first completely online un- dergraduate ECE program in the State of Maryland. He has published over 50 papers and presented his research work at regional, national and international conferences. He also runs several exciting summer camps geared towards middle school, high school, and community college students to expose and increase their interest in pursuing Science Technology Engineering and Mathematics (STEM) fields. Dr. Astatke travels to Ethiopia every summer to provide training and guest lectures related to the use of the mobile laboratory technology and pedagogy to enhance the ECE curriculum at five different universities.Dr. Dianna Newman, University at Albany
, they may find it easier or harder to accomplish. Theless constrained curriculum in senior design allows them to pivot and adjust their target to accountfor new findings. This would be harder in shorter-term projects, as will be discussed later.3.2 Hardware Security Course3.2.1 Course DescriptionWentworth offers a technical elective once a year called Hardware Security, which has beendiscussed in previous work [12]. As part of the course activities, students engage in a number ofhands-on labs and a project. The labs take roughly 1-2 hours, while the project is intended to beworked on all semester and is the focus of class activity for the last 2-4 weeks.The laboratory assignments are used for conceptual reinforcement in various
implementation of the first completely online un- dergraduate ECE program in the State of Maryland. He has published over 50 papers and presented his research work at regional, national and international conferences. He also runs several exciting summer camps geared towards middle school, high school, and community college students to expose and increase their interest in pursuing Science Technology Engineering and Mathematics (STEM) fields. Dr. Astatke travels to Ethiopia every summer to provide training and guest lectures related to the use of the mobile laboratory technology and pedagogy to enhance the ECE curriculum at five different universities.Dr. Charles J. Kim, Howard University Charles Kim is a professor in
. Inaddition, students must take a systems approach to designing the overall SDR transceiver, whichprovides them with exposure to this important aspect of project development. In this paper, we discuss the impetus for the course, the course’s goals and outcomes, thematerial covered, and the integration of the material with a hands-on laboratory component ofthe course. We finish with some recommendations for others seeking to develop and deliver ahands-on SDR course.2. Course Impetus An SDR is a communications system comprised of general-purpose reconfigurablecomponents that are programmed to define its operational characteristics [Mitola, 1995;Buracchini, 2000]. For instance, bandwidth and modulation (SSB, CW, AM, FM, FSK, PSK,QPSK, etc
AC 2012-4521: MOBILE STUDIO PEDAGOGY, PART 2: SELF-REGULATEDLEARNING AND BLENDED TECHNOLOGY INSTRUCTIONProf. Kenneth A Connor, Rensselaer Polytechnic Institute Kenneth Connor is a professor in the Department of Electrical, Computer, and Systems Engineering where he teaches courses on plasma physics, electromagnetics, electronics and instrumentation, electric power, and general engineering. His research involves plasma physics, electromagnetics, photonics, engineering education, diversity in the engineering workforce, and technology enhanced learning. Since joining the Rensselaer faculty in 1974, he has been continuously involved in research programs at such places as Oak Ridge National Laboratory and the
AC 2008-1237: HYBRID CONTENT DELIVERY: ON-LINE LECTURES ANDINTERACTIVE LAB ASSIGNMENTSCordelia Brown, Purdue University Cordelia M. Brown is a Visiting Assistant Professor in Electrical and Computer Engineering at Purdue University. She received her Ph.D. in Electrical Engineering at Vanderbilt University, her M.S. in Electrical Engineering at Vanderbilt University, and her B.S. in Electrical Engineering at Tuskegee University. Her research interests include assessment of instructional methods, laboratory design, collaborative learning, mentoring, professional development skills, and retention and recruitment issues in engineering education.Yung-Hsiang Lu, Purdue University Yung-Hsiang
case studies. We have recently introduced a senior technical elective whichintroduces graphics processing from the perspective of the software developer, hardwarearchitect, and system integrator. Towards this end, lecture topics are designed for students with nocomputer graphics background, and focus on solving specific computing problems using skillslearned from a variety of computer engineering courses (e.g. digital logic, computer architecture,software design, embedded systems). As part of the laboratory component, students are presentedwith a series of bi-weekly design challenges that are geared towards implementing a particularmodule in the 3D graphics pipeline (with both hardware and software support) using anFPGA-based hardware
Bell Laboratories, General Motors Laboratories, NASA Goddard Space Flight Center, and SPAWAR Systems Center. Page 12.582.1© American Society for Engineering Education, 2007 Effective “Writing to Communicate” Experiences in Electrical Engineering CoursesAbstractTo help develop essential communication skills that engineering graduates need, engineeringfaculty must find ways to incorporate writing into the curriculum. There have been reports ofimpressive work integrating writing centers or technical communication professionals withengineering courses. However, most engineering programs do not
science, engineering and technology investigations. He also proposed and implemented the pioneering concept of integrated adjustable virtual laboratories. To facilitate these methodologies for academic education, corporate and military training, his company developed new ground-breaking e-learning solutions, as well as relevant assessment and authoring tools. Dr. Cherner holds an MS in Experimental Physics, and Ph.D. in Physics and Materials Science. He published over 70 papers in national and international journals and made dozens presentations at various national and international conferences and workshops. Dr. Cherner has served as a Principal Investigator for several government-funded
encourage undergraduate students to consider graduate level studies 10. Jiang and Maoattempted to implement SDR based courses in minority institution 11. Wu et al developed anaffordable, evolvable, and expandable laboratory suite to allow different institutions to offerlaboratories in communications and networking courses 12. However, to the best of ourknowledge, there is no existing work that introduces cooperative transmit beamforming, the keytechnique in next-generation communication systems, with SDR to undergraduate electricalengineering students.To bridge the gap between the undergraduate communication systems education and theindustrial demands of entry-level electrical engineers with SDR and beamforming expertise, aneducational module has
received the B.S.E.E. and M.S.E.E. degrees from the University of Toledo, Toledo, OH, in 1991 and 1993, respectively, and the Ph.D. degree from the Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, in 1996, where he studied under the Bradley Fellowship. From 1996 to 2001, he was with Bell Laboratories, Murray Hill, NJ, and Whippany, NJ. While at Bell Laboratories his research focused on CDMA systems, intelligent antenna systems, and multiuser detection. He was named a Distinguished Member of Technical Staff in 2000. In 2001, he joined Virginia Tech as an Assistant Professor with the Bradley Department of Electrical Engineering, where he works
questions and assistance forinstructors.Keywords: Distributed lab, active learning, finite state machineIntroduction:Laboratory experiments are an essential source for instructors who want to include activelearning instructional methods in their engineering courses, yet the format is often not well suitedto incorporate into lecture-based courses. Lab experiments are generally performed in labcourses in centralized locations. A new extension to the laboratory experience is distributedlaboratories, which consist of experiments that can be conducted in a variety of locations such asa standard classroom, common area, or even a dorm room. As such, they can be incorporatedinto traditional lecture courses or distributed from decentralized locations.The
the lecture and lab activities described herein assisted their learning.IntroductionIn 1975, an MIT study published by ASEE1 noted that "educational experience in design shouldbe promoted as early as possible...and should be available as an integrated part of the engineeringcurriculum." A subsequent push to "integrate design throughout the curriculum"2 led programsto add design content in lower-division (e.g., freshman engineering) courses3,4 and augmentdesign activities in upper-division courses.Instructional laboratories are a natural setting for design5, but meaningful exercises in lower-division courses pose a challenge. Several efforts have been reported which involve the addition ofelectronics topics to an introductory circuit analysis
The University of Texas at Tyler PSpice ArchiveAbstractPSpice (Cadence, San Jose, CA), has become a de facto standard for courses in electric andelectronic circuits. Its popularity stems from the ready availability of the evaluation (student)version and the inclusion of the evaluation version with a number of widely-used textbooks inthese courses. Many textbooks also provide access to example circuit files either in CD form orthrough a companion web site. However, faculty at the University of Texas at Tyler havefrequently found it valuable to develop their own analyses to better illustrate particular topics orto simulate circuits found in laboratory courses. These analyses include standard types ofcircuits (e.g., simple operational amplifier