Paper ID #12974Design and Hardware Implementation of Laboratory-Scale Hybrid DC powerSystem for Educational PurposeMr. Mustafa Farhadi, Florida International University Mustafa Farhadi received the BS degree in EE from Mazandaran University, Mazandaran, Iran, in 2007 and the MS degree in EE from Iran University of Science & Technology, Tehran, Iran in 20011. He is currently a graduate teaching and research assistant working toward the Ph.D. degree at the Department of Electrical and Computer Engineering Department, Florida International University, Miami, Florida USA. His current research interests include design
Paper ID #12496Test Bed for a Cyber-Physical System (CPS) Based on Integration of Ad-vanced Power Laboratory and eXtensible Messaging and Presence Protocol(XMPP)Dr. Ilya Y. Grinberg, Buffalo State College llya Grinberg graduated from the Lviv Polytechnic Institute (Lviv, Ukraine) with an M.S in E.E. and earned a Ph.D. degree from the Moscow Institute of Civil Engineering (Moscow, Russia). He has over 40 years of experience in design and consulting in the field of power distribution systems and design automation. He has over 40 published papers. Currently he is professor of engineering technology at SUNY Buffalo State. His
returned to his boyhood home and is teaching as a full professor at Northern Michigan University. He is a member of HKN and IEEE, a Registered Professional Engineer in California, and is a past chair of the Energy Conversion and Conservation Division of ASEE. c American Society for Engineering Education, 2019 Teaching Power Transformer Testing to UndergraduatesAbstractMany educational electrical power laboratories do not have any access to utility-sized three-phase and single-phase power transformers, voltage regulators, and utility-grade instrumenttransformers. At Northern Michigan University, a local consortium (Lake Superior CommunityPartnership, The Upper Peninsula Power Company, American
full of lessons and engineering applications.Above all, every university has a power plant and workers who are full of experience and readyto share their experience with students with enthusiasm and dedication. The power plant is ademonstration laboratory that can be used to teach many engineering programs including heattransfer, thermodynamics, machinery, water treatment and water quality, materials, structure,combustion, and, more importantly, all these are undergone under dynamic conditions.Managing this mentorship was difficult, due to the time constraints and the corona pandemic.One of the advantages is the proximity of the early college to the engineering building. Research,education, and outreach are involved in this mentoring at
c Society for Engineering Education, 2020 TEACHING THERMODYNAMICS ONLINE: INSTRUCTOR AND STUDENT PERSPECTIVES Farshid Zabihian California State University, Sacramento Sacramento, California, U.S.A.AbstractThe diverse modes of delivery, including online courses and programs, have been continuouslygaining popularity in the past couple of decades. Many students are taking online courses duringthe course of their study. The number of students who are taking these courses and the number ofonline courses these students are taking vary significantly and depend on the discipline andinstitution. Ironically, while the
Paper ID #33901Project-based Learning Approach in Teaching Power and Energy Engineer-ingCoursesDr. Radian G. Belu, Southern University Dr. Radian Belu is Associate Professor within Electrical Engineering Department, Southern University, Baton, Rouge, USA. He is holding one PHD in power engineering and other one in physics. Before joining to Southern University Dr. Belu hold faculty, research and industry positions at universities and research institutes in Romania, Canada and United States. He also worked for several years in industry as project manager, senior engineer and consultant. He has taught and developed
. Page 26.1345.1 c American Society for Engineering Education, 2015 Revitalizing an Electromechanical Energy Conversion CourseOur University’s Electrical and Computer Engineering Department has offered an electivecourse in “Electric Machinery” for decades. It is a 4-credit course offered each fall term forjuniors and seniors, with a laboratory component. Prior to fall 2013, this course had been lecture-heavy due to school scheduling requirements, and it suffered from use of old laboratoryequipment that was difficult to maintain. With increasing focus on renewable energy and powerelectronics in the curriculum, we felt the need to modernize this course so that it provides a betterlearning experience and
the systems approach,the educators are exposing their students to the various perspectives related to the utilization ofnatural resources for bio-energy, ways to mitigate the global climate change, and understand thecomplexities that are involved in modern scientific and technological challenges. The studentsare also exposed to career choices in the cutting-edge STEAM disciplines; b)To develop andprovide curricular materials and set of teaching tools for educators for enhancing instruction inthe areas of sustainable bio-energy and sustainability in their classrooms--In addition to trainingthe STEAM educators on a systems perspective of renewable energy, the program includesdeveloping and providing curricular materials and laboratory tool kits
Energy concentration was developed at LakeSuperior State University (LSSU). This concentration is composed of courses such as powerelectronics, power transmission and distribution, and vehicle energy systems. In addition, a newcourse entitled Energy Systems & Sustainability was also developed for this concentration.This new Energy Systems & Sustainability course is designed to provide a broad overview andallows both engineering and non-engineering students to gain exposure to these areas. There isalso a separate laboratory course that is designed for the engineering students, and as suchcontains more technical detail. Only the lecture course is discussed in this work. The primaryobjectives for the course are for students to be able to
weredeveloped and delivered with the assistance of the National Renewable Energy Laboratory, SolarEnergy International, the Wisconsin K-12 Energy Education Program, and the Colorado Schoolof Mines Teacher Enhancement Program. Additional financial support was provided by theWisconsin Distributed Resources Collaborative. Dr. Penny and Chuck Billman of REGSConsulting provided data gathering and analysis to assess the impact of this work, and additionalevaluation insights have been provided by Dr. Jean Sando. Thanks also to the faculty memberswhose work is profiled in this report. Their efforts to teach the next generation of renewableenergy consumers and professionals are an inspiration for us all.References[1] SPE. Global Market Outlook for Solar Power
Paper ID #29546A comparison of the renewable energy and energy storage sectors inGermany and the United States, with recommendations for engineeringteaching practices.Dr. Lisa Bosman, Purdue University-Main Campus, West Lafayette (College of Engineering) Dr. Bosman holds a PhD in Industrial Engineering. Her research interests include STEM Education and the Impacts of Technology on Society. Within the realm of STEM Education, she has done a variety of work in areas including teaching the entrepreneurial mindset, competency-based learning, self-regulated learning, transdisciplinary education, integrating the humanities into
years starting in the Spring of 2012. Ryan currently works as a Research Assistant in the Combustion and Energy Research Laboratory (COMER). His current research is focused on new catalyst development, ceramic materials for solid oxide fuel cells (SOFCs), combustion, energy conversion, fuel cell modeling, fuel cell technology applications and system design. Ryan is a Syracuse University Graduate Fellow and an Astronaut Scholar. Page 26.505.1 c American Society for Engineering Education, 2015 Developing T-Shaped Professional Engineers through an Advance Energy
influencing undergraduate Hispanic and other minority students’ decision to considerengineering as their major; 3) Dual programs for Community Colleges and summer programs aswell as High Schools at one of the institution are providing access for pre-college minority andwomen students to careers in engineering and technology; 4) Our project aims to develop andestablish an integrated research-oriented educational facility to support and enhance teachingand learning in these areas, by providing a set of comprehensive laboratory experiments,teaching and learning modules; and 5) The design and implementation of a computationalworkbench for simulating hybrid power systems and distributed energy resources.2. Curriculum ChangesEngineering and technology
and the other mid-afternoon), and an hour-long lunch period each day. The first week of the workshop was focusedon familiarizing participants with the PV Technician curriculum (i.e., technical topicpresentations, related hand-on laboratory exercises, and the two games related to PV sizing andtroubleshooting). Presentations and discussions about non-technical topics (e.g., social andgender inclusion; tools for effective teaching) were given on the last day of the first week of thetraining. In the second week of the training, participants were introduced to advanced PV topicsand related laboratory exercises. Although the advanced topics are not part of the techniciantraining material, they were covered to strengthen the educators’ overall
Zeeh1 1. Students, University of Southern Maine, Gorham, ME 2. U.S. Navy, former students, University of Southern Maine, Gorham, ME 3. Professors, University of Southern Maine, Gorham, MEProf. Daniel M Martinez, University of Southern Maine Dr. Daniel M. Martinez received his B.S. in Chemical Engineering at the University of Rochester in western New York. He continued there to pursue a Ph.D., and after qualifying for entry into the program left for NASA’s Goddard Space Flight Center in Maryland to conduct his graduate laboratory research. At Goddard he studied nucleation phenomenon, specifically vapor to particle conversion of metals in a gas evaporation condensation chamber. At the end of his Ph.D. work, Daniel became
Paper ID #19415A Capstone Project: Assessment of Energy Savings from Retuning of AirHandlersDr. Hayrettin Bora Karayaka, Western Carolina University Bora Karayaka is an Assistant Professor at School of Engineering and Technology, Western Carolina University. He has worked as a Senior Engineer for smart grid and wireless communication industries for over ten years. He is currently responsible for teaching electric power engineering courses in the department. Dr. Karayaka’s research interests include power engineering education, ocean wave energy harvesting, identification, modeling and control for electrical machines
research with the University of Rochester Center for Photo-Induced Charge Transfer. Since 2003, Dr. Walz has taught chemistry and engineering at Madison Area Technical College, and he is also an adjunct professor of Civil and Environmental Engineering at the University of Wisconsin. He has served as teacher for the UW Delta Center for Integrating Research, Teaching and Learning, and has mentored several graduate students who completed teaching internships at the technical college while creating new instructional materials for renewable energy and chemical education. Dr. Walz is also an instructor with the Wisconsin Center for Environmental Education and the K-12 Energy Education Program (KEEP), delivering
design and development of pilot testing facility, mechanical instrumentation, and industrial applications of aircraft engines. Also, in the past 10 years she gained experience in teaching ME and ET courses in both quality control and quality assurance areas as well as in thermal-fluid, energy conversion and mechanical areas from various levels of instruction and addressed to a broad spectrum of students, from freshmen to seniors, from high school graduates to adult learners. She also has extended experience in curriculum development. Dr Husanu developed laboratory activities for Measurement and Instrumentation course as well as for quality control undergraduate and graduate courses in ET Masters program. Also, she
has been achieved in successfully chairing ten or more graduate student culminating projects, theses, or dissertations, in 2011 and 2005. He was also nominated for 2004 UNI Book and Supply Outstanding Teaching Award, March 2004, and nominated for 2006, and 2007 Russ Nielson Service Awards, UNI. Dr. Pecen is an Engineering Tech- nology Editor of American Journal of Undergraduate Research (AJUR). He has been serving as a re- viewer on the IEEE Transactions on Electronics Packaging Manufacturing since 2001. Dr. Pecen has served on ASEE Engineering Technology Division (ETD) in Annual ASEE Conferences as a reviewer, session moderator, and co-moderator since 2002. He served as a Chair-Elect on ASEE ECC Division in
provides additive manufacturing support for design courses, laboratory courses, and entrepreneur initiatives. This facility houses several different technology 3D printers that capable of printing parts from polymers, fibers, composites, and metals as well as 3D scanning and subtractive manufacturing equipment. His research focuses on machining and manufacturing with a specific concentration on the use of additive manufacturing processes for advanced materials. He emphasis on design for additive manufacturing (DfAM), topology optimization, lightweight applications, and finite element analysis in additive manufacturing processes. Dr. Vora extensively teaches the additive manufacturing technology through the dedicated
the topic in general,they can be much more thorough in their research. This debate helps them discover and exploremuch more than they learn in the lectures. Knowing how to solder electrical components could be a worthwhile skill for constructingsome of the projects. With this in mind, a laboratory session is planned for the students about thebasics of soldering, as well as the basics of electronic devices. This aids their attaining a morepractical perspective of the theoretical concepts that they have heard. For the practice session,each of the students and teachers is given a soldering kit containing instructions and materials tobuild a basic 555 timer circuit. This practical work is fun and interesting, given the fact that theyall have
Paper ID #20444Development of a Web-based Decision Tool for Selection of Distributed En-ergy Resources and Systems (DERS) for Moving College and Corporate Cam-puses Toward Net-Zero EnergyDr. Christopher J. Damm, Milwaukee School of Engineering Dr. Christopher Damm is Professor and Director of the Mechanical Engineering Program at the Milwau- kee School of Engineering where he teaches courses in thermodynamics, heat transfer, fluid mechanics, engineering design, renewable energy and advanced energy technologies. Dr. Damm’s research and con- sulting focus on energy conversion and pollutants associated with energy conversion