investigates the adaption of the Competing Values Framework (CVF) for use instudying behavioral complexity and leadership in engineering students working in project teams.Based on a foundation of other studies that leverage the CVF in an engineering educationcontext, the CVF survey was slightly modified to be appropriate. Data were collected fromstudents working on projects both in curricular and co-curricular settings. The data demonstrateslevels of complexity among example student profiles and draws comparisons between curricularand co-curricular settings as well as between genders. Results show that while there are genderdifferences in the curricular setting, there are no significant differences in leadership rolesbetween genders in the co
graduation.Attainment of proficiency for each outcome is measured using embedded indicators based onmapping to the six levels of Bloom’s Taxonomy 11,12. Table 1 summarizes the 22 CEE Page 26.1465.3Table 1 Summary of Citadel Civil Engineering CEE Department Program Outcomes Dept. Program Outcome Dept. Program Outcome with Professional Skills Linkage 1. Mathematics 2. Science 3. Solid & Fluid Mechanics 4. Experiments 5. Problems Solving a.) Techniques b.) Tools Design 6. a.) Environmental 7. b.) Structural 8. c.) Land Development 9. d.) Transportation 10. Contemporary Issues 11. Project Management
Department of Chemical Engineering and Applied ChemistryDr. Robin Sacks, University of Toronto Robin is an Assistant Professor with the Institute for Leadership Education in Engineering at the Uni- versity of Toronto where she teaches leadership and positive psychology. She served as Director of the Engineering Leadership Project, which aims to understand how engineers lead in industry. c American Society for Engineering Education, 2017 Leading from the Bottom Up: Leadership Conceptions and Practices among Early Career EngineersIntroductionThe engineering profession in Canada and the United States is changing in response to numerousglobal forces, and this in turn is
awareness was used as segue into a personal communication stylesinventory activity.Social Media AssignmentsFour assignments involved a deliverable produced by social media. The first two social mediaassignments in the course, Online Presence and Interview a Junior, were individual assignments.The latter two of these, the Alpine Tower Statics Laboratory Wiki and NAE Grand ChallengesVideo Project, involved teamwork and are discussed later in this section of the paper.The goal of the Online Presence Assignment was to help establish expectations for the classstructure and included five simple steps. Students were simply required to upload a picture ofself to the “Class Photos Wiki” in Blackboard, create a LinkedIn profile, create a YouTubechannel, log
Paper ID #15521Achieving Excellence in Master of Engineering Education: A Case Study ofNational University of Defense Technology’s PracticeProf. Fu zhongli, National University of Defense Technology FU,zhongli is deputy director of the Center for National Security and Strategic Studies, National Univer- sity of Defense Technology (NUDT).In this role, he manages NUDT’s continuing education reform and leads excellent engineer training research projects. He has conducted research on engineering education as a visiting scholar in Hong Kong University of Science and Technology in 2013. His research interests are in engineering
Page 26.1424.1 c American Society for Engineering Education, 2015 Student Perspective on Defining Engineering LeadershipAbstractMany definitions and theories of leadership that have evolved over the past few centuries.However, only recently has the term engineering leadership been introduced and there is alack of a clear definition. A stronger understanding of the different perspectives of this termwill help institutions to develop and improve engineering leadership education programs. Theaim of this research project is to answer the following: from the perspective of engineeringstudents, academics, and professionals, what is engineering leadership and what skills arerequired to be a leader in
insolving problems. In this paper, we present curriculum design, early results andrecommendations from first year assessment of the program and plans for future programmaticelements and assessment.Students are accepted into the leadership program during sophomore year. The curriculum isdesigned to follow an intentional sequence of experiences that meet students’ developmentalreadiness and needs over the three years in the program. In each year, the student cohortsexplore one of three themes of the program (leading oneself, leading with others, or leadingtechnology and innovation) through a combination of three formal leadership courses, a varietyof experiential learning opportunities, and the completion of a capstone project. Uponcompletion of the
interests include engineering leadership, engineering ethics education, critical theory, teacher leadership and social justice teacher unionism.Dr. Robin Sacks, University of Toronto Dr. Sacks is an Assistant Professor in the Faculty of Applied Science and Engineering at the University of Toronto teaching leadership and positive psychology at both the graduate and undergraduate levels. Robin also serves as the Director of Research for the Engineering Leadership Project at the Institute for Leadership Education in Engineering which aims to identify how engineers lead in the workplace.Ms. Annie Elisabeth Simpson, Institute for Leadership Education in Engineering, University of Toronto Annie is the Assistant Director of the
Paper ID #14038Contributions of Competition Based Complex Engineering Design Experi-ence to Leadership Development in Engineering StudentsDr. Farah I. Jibril , Qatar UniversityDr. Bassnt mohamed yasser, Qatar University A research assistant in VPCAO office in Qatar University and have my masters degree in quality man- agement with thesis project about ”utilization of Lean six sigma in enhancement of sterile suspensions manufacturing”. Being working on pharmaceutical manufacturing field in Glaxosmithkline Egypt as sec- tion head for quality assurance and validation I have a great experience in quality management system
psychology at both the graduate and undergraduate levels. Robin also serves as the Director of Research for the Engineering Leadership Project at the Institute for Leadership Education in Engineering which aims to identify how engineers lead in the workplace.Mr. Mike Klassen, Institute for Leadership Education in Engineering, University of Toronto Mike Klassen is the Leadership Programming Consultant at the Institute for Leadership Education in Engineering (ILead) at the University of Toronto. He designs and facilitates leadership programs for engineering students - with a range of focus from tangible skill development to organizational leadership to complex social problems. Mike has a Graduate Diploma in Social Innovation
Education in Engineering (ILead) at the University of Toronto. Her research interests include engineering leadership, engineering ethics education, critical theory, teacher leadership and social justice teacher unionism.Dr. Robin Sacks, University of Toronto Dr. Sacks is an Assistant Professor in the Faculty of Applied Science and Engineering at the University of Toronto teaching leadership and positive psychology at both the graduate and undergraduate levels. Robin also serves as the Director of Research for the Engineering Leadership Project at the Institute for Leadership Education in Engineering which aims to identify how engineers lead in the workplace
consultant with universities and professional organizations looking to improve engineering student engagement, and has contributed to the development of innovative pedagogies, courses, and curricula at Olin College, mainly in the design and mechanical engineering areas. Her technical area of interest is experimental thermal-fluids and she worked for many years on the development and characterization of nanofluids (colloidal suspensions of nanoparticles), mainly for thermal management applications. She now focuses on projects that effectively engage undergraduates in thermal-fluid and propulsion related areas, including recent work on a hybrid solid rocket test stand. Dr. Townsend has industry experience in
, the advancement of theories around transportation systems health, and the exploration of partnering strategies for improved project delivery outcomes. Smith-Colin has provided research support to the Global Engineering Leadership Development Minor, and has served as a one-on-one coach and grand challenges facilitator for the Leadership and Education Development (LEAD) program for the past 3 years. In fall 2016, she will serve as an instructor for the leadership development sections of the GT 1000 first year seminar. Smith-Colin is a two-time recipient of the Dwight David Eisenhower Transportation Fellowship, and was honored with the 2014 WTS/CH2M Hill Partnership Scholarship. She and her colleagues were awarded the
case study to measure the learning outcomes of engineering students in the new Bachelor’s of Science degree at UTEP, Engineering Education & Leadership.Mr. Leonardo Orea-Amador, University of Texas - El Paso Leonardo is a research student dedicated to design, engineering, and entrepreneurship. He is an investi- gator for the Empathic Design Studio at the University of Texas at El Paso (UTEP) since August 2015. Leonardo is working to obtain his master’s degree in Systems Engineering at the University of Texas at El Paso where he also obtained his bachelors of science in Mechanical Engineering. In 2014 he and his team were awarded first place with project, ProductivityPod, at the Paso del Norte Venture
implementation project, the stress was building within the group, and the quality of our work was beginning to suffer. You noticed that we were not doing our best work and challenged us to rethink our approach. You reminded us of what we were capable of doing if we worked more together and this caused all of us to pause. No one else would have thought to intervene like you did and it made a real difference. In the end, we were all very proud of what we accomplished together and you played a big part in us getting there.The originators of the RBS exercise recommend that students receive stories from at least 10respondents and in my experience, most students
professors was not specifically identified, typical estimates are reflected by a recent publication by the National Society of Professional Engineers which stated that … “few engineering faculty today have practical experience in design, analysis, review, or management of engineering projects.”18 22% of authors represent university leadership institutes, indicating these organizations are playing a significant role in contributing to the scholarship in this field. Contributions from authors in nontraditional and nonacademic positions are also substantial with 38% of authors currently working in these areas. Again, this proportion is much higher than anticipated considering a recent study by the
applied engineering and molecular biology approaches to the study of the skeletal response to mechanical loading. As a Mechanical Engineer, she worked on facil- ity design projects involving mechanical systems that included heating, ventilation, air conditioning, and energy conservation systems, as well as R&D of air conditioning equipment for Navy ships. Additional research interests have included the investigation of relationships among components of the indoor envi- ronment, occupants, and energy usage. Specifically, the effects of the indoor environment on occupant health and well-being and in parallel, how socially-mediated energy-saving strategies can increase aware- ness of energy use and/or increase energy
. As part ofthis group, I regularly train men, both on- and off-campus, to better serve as gender equity allies.I am a member of the Commission on the Status of Women Faculty, a committee that works todevelop and enhance gender-equitable policies at North Dakota State University. I am primaryauthor of a series of broadly distributed advocacy tips, have participated in a national webinar onengaging male faculty as gender equity allies, and have given several conference presentationson the same topics. Additionally, I currently serve on the planning committee for the NSF-funded project Transforming Undergraduate Education in Engineering (TUEE), which has thegoal of enhancing women participation and success in engineering programs.Dr. Holmes: I
Immediate Past-President of WEPAN, was PI on Tech’s NSF ADVANCE grant, a member of the mathematical and statistical so- cieties Joint Committee on Women, and advises a variety of women and girl-serving STEM projects and organizations. She is a past Vice President of ASEE and current Chair of the ASEE Long Range Planning Committee.Dr. Kim LaScola Needy P.E., University of Arkansas Kim LaScola Needy is Dean of the Graduate School and International Education at the University of Arkansas. Prior to this appointment she was Department Head and 21st Century Professor of Industrial Engineering at the University of Arkansas. She received her B.S. and M.S. degrees in Industrial Engi- neering from the University of Pittsburgh