Paper ID #37969Toy Adaptation in a Laboratory Course: An Examination of LaboratoryInterests and Career MotivationsDr. Alyssa Catherine Taylor, University of California, San Diego Dr. Alyssa Taylor is an Associate Teaching Professor in the Shu Chien-Gene Lay Department of Bioengi- neering at the University of California San Diego. Dr. Taylor has twelve years of experience teaching across bioengineering laboratory, introductory, and capstone design classes. Through work such as toy adaptation described in this paper, Dr. Taylor seeks to prepare students to engage in Universal Design and consider accessibility in their
on equity, inclusion in the classroom, and easing student transition to the workforce catering to STEM graduates.Marcos Jose Inonan Moran, University of Washington Marcos Inonan is a PhD student and research assistant in the Remote Hub Lab (RHLab) of the depart- ment of Electrical and Computer Engineering at the University of Washington in Seattle. His research is centered on developing remote laboratories with a lens of equitable access to engineering education, and driven by his commitment to promote diversity, equity and inclusion in STEM education. In addition to his research on remote laboratories, Marcos has expertise in digital communication theory, signal process- ing, radar technology, and firmware
of Technol- ogy in 2006 and went on to receive a Ph.D. in chemical engineering from the University of Wisconsin- Madison in 2011.Dr. Chris Barr, University of Michigan Dr. Christopher Barr is the Instructional Laboratory Supervisor in the Chemical Engineering Department at University of Michigan. He obtained his Ph.D. at University of Toledo in 2013 and is a former Fellow in the N.S.F. GK-12 grant ”Graduate Teaching Fellows in STEM High School Education: An Environ- mental Science Learning Community at the Land-Lake Ecosystem Interface”. His main responsibilities are supervising and implementing improvements to the undergraduate labs. He also serves as secondary instructor for the CHE labs, the Departmental
Paper ID #39064RHLab: Digital Inequalities and Equitable Access in Remote LaboratoriesMr. Marcos Jose Inonan Moran, University of Washington Marcos Inonan is a PhD student and research assistant in the Remote Hub Lab (RHLab) of the depart- ment of Electrical and Computer Engineering at the University of Washington in Seattle. His research is centered on developing remote laboratories with a lens of equitable access to engineering education, and driven by his commitment to promote diversity, equity and inclusion in STEM education. In addition to his research on remote laboratories, Marcos has expertise in digital
Paper ID #41284Prioritizing Learning Outcomes for Chemical Engineering Laboratory Courses:Student PerspectivesDr. Chris Barr, University of Michigan Dr. Christopher Barr is the Instructional Laboratory Supervisor in the Chemical Engineering Department at University of Michigan. He obtained his Ph.D. at University of Toledo in 2013 and is a former Fellow in the N.S.F. GK-12 grant ”Graduate Teaching Fellows in STEM High School Education: An Environmental Science Learning Community at the Land-Lake Ecosystem Interface”. His main responsibilities are supervising and implementing improvements to the undergraduate labs. He also
Paper ID #38421BYOE: A Laboratory Experiment with a Stirling Engine for TroubleshootingEducation in Mechanical EngineeringProf. Ahmet Can Sabuncu, Worcester Polytechnic Institute Dr. Sabuncu holds a Ph. D. in Aerospace Engineering from Old Dominion University. Dr. Sabuncu’s professional interests spans from engineering education research, history of science and engineering, thermo-fluids engineering, and microfluidic technology.Mitra Varun Anand, Worcester Polytechnic Institute Mitra Anand serves as the Associate Director of Makerspace, and Innovation and Entrepreneurship, in addition to being an Adjunct Faculty of
Paper ID #39606At-Home Drug Delivery Experiment: Teaching Mass Transfer Using FoodDyes, DIY SpectrometerDr. Gautom K. Das, University of Maryland Baltimore County Dr. Gautom Das is a Lecturer in the Chemical, Biochemical and Environmental Engineering at UMBC. Prior to joining UMBC, he was a Research Scientist and Lecturer in the Chemical and Biomolecular En- gineering at Rice University, and a Post-doctoral Scholar at the University of California, Davis. He earned his PhD in Chemical and Biomolecular Engineering from the Nanyang Technological University (NTU), Singapore. He has worked in laboratories in the US, Canada
Paper ID #39226A Framework for the Development of Online Virtual Labs for EngineeringEducationDr. Genisson Silva Coutinho, Instituto Federal de Educac¸a˜ o, Ciˆencia e Tecnologia da Bahia Genisson Silva Coutinho is an Associate Professor at the Department of Mechanical Engineering and Materials at the Federal Institute of Science and Technology of Brazil. Genisson earned his Ph.D. in Engineering Education from Purdue University. His specialties are engineering education research, ed- ucational innovation, laboratory education, product design and development, finite element analysis, ex- perimental stress analysis, product
Paper ID #37398Learning through Escape: Developing Collaboration, Communication, andConfidence in a Biomedical Engineering Laboratory Escape RoomDr. Rachel C. Childers, The Ohio State University Dr. Childers is an Associate Professor of Practice and Associate Chair of Undergraduate Studies at the Ohio State University in the Biomedical Engineering department. Her teaching focus has been on hands- on BME laboratory courses. She is also interested in broadening participation and retention in BME.Sunny Kwok, The Ohio State University PhD Fellow ©American Society for Engineering Education, 2023
Learning Questionnaire;[30] R. Taylor, (2012). Review of the motivated strategies for learning questionnaire (MSLQ)using reliability generalization techniques to assess scale reliability (Doctoral dissertation) AuburnUniversity[31] M. K., Smith, F. H., Jones, S. L., Gilbert, and C. E. Wieman, (2013). The ClassroomObservation Protocol for Undergraduate STEM (COPUS): A new instrument to characterizeuniversity STEM classroom practices. CBE—Life Sciences Education, 12(4), 618-627.[32] J. B, Velasco, A. Knedeisen, D. Xue, T.L., Vickrey, M., Abebe, and M. Stains. (2016)“Characterizing Instructional Practices in the Laboratory: The Laboratory Observation Protocolfor Undergraduate STEM”. Journal of Chemical Education. Vol 93, pp 1191-1203
Paper ID #37880Experimental methods in tissue engineering: An integrated approach totheory, design, and analysisDr. David L Simpson, Wentworth Institute of Technology Dr. Simpson is the Provost Initiatives Coordinator for Inclusive Excellence and an Assistant Professor in the Biological Engineering Program. He joined Wentworth in 2018 from the University of California, Davis where he served as the Associate Director for the Veterinary Institute for Regenerative Cures and Director of the Regenerative Medicine Laboratory. At Wentworth, Dr. Simpson is working to promote inclusive excellence within the academic programs
technology, biomedic engineering and remote laboratories (WebLabs).Rog´erio Cassares PiresAlessandra Dutra CoelhoFernando de Almeida MartinsMarcello Nitz ©American Society for Engineering Education, 2023 A Web Platform for Learning Control Systems Based On IoT Application Abstract—This work presents the development of an IoTapplication aimed for teaching process control, which allows II. REMOTE LAB DEVELOPMENTremote access by web. It is a level control system with a friendly,responsive and interactive interface that allows theimplementation of SISO type control systems (Single Input and The concept applied to
Paul, Oregon State University ©American Society for Engineering Education, 2023 Lab Safety Awareness in Incident and Near-miss Reporting by Students Participating in Engineering Societies: A Case StudyAcademic laboratory safety has gained considerable attention from researchers and researchinstitution administrators since several high-profile incidents in the late 2000’s. Another part ofstudent learning in engineering, though informal, occurs in co-curricular activity such asengineering societies and team competitions where students conduct hands-on activities toachieve certain objectives, usually with minimal (if any) authoritative figures in presence. Thesafety aspect of these co-curricular
laboratory experiment, but italso has disadvantages, namely students have less class time to learn the fundamentals of twovast fields of study—statistics and measurement.Initially, the content of the IDE’s Data Analysis course was organized in series, focusing onmeasurement topics first and statistical concepts second. This sequential model had twomajor disadvantages. First, because the measurement and data acquisition content wasconcentrated at the start of the semester, many students struggled to remember what they“learned” in the first part of the class when they completed their culminating project later inthe semester, in which they designed their own experiment and then collected and analyzedtheir own data. This phenomenon illustrated that
Paper ID #42478Embedding the Entrepreneurial Mindset into Undergraduate BioengineeringCourses: Two Instructional Laboratory Case StudiesProf. Caroline Cvetkovic, University of Illinois Urbana-Champaign Caroline Cvetkovic is a Teaching Assistant Professor of Bioengineering in The Grainger College of Engineering at the University of Illinois Urbana-Champaign.Dr. Keilin Jahnke, University of Illinois Urbana-Champaign Dr. Keilin Jahnke is a Teaching Assistant Professor in Innovation, Leadership, and Engineering Entrepreneurship in The Grainger College of Engineering at the University of Illinois Urbana-Champaign.Sarah Elizabeth
, instructional laboratories, and equity-focused teaching. She teaches biomedical instrumentation, signal processing, and control systems. She earned a Ph.D. in Systems Engineering from the University of Illinois Urbana-Champaign, an M.S. in Electrical Engineering from Iowa State University, and a B.S. in Electrical Engineering from Rose-Hulman Institute of Technology. ©American Society for Engineering Education, 2024 Designing a Bioinstrumentation Lab for All LearnersIntroductionCombining the experiences of the instructor, teaching assistant, and students, we utilizedparticipatory action research and the application of entrepreneurial mindset to improve theexperience for all students in a
Paper ID #42982Thematic Insights from Focus Groups: Addressing Digital Inequalities inRemote Laboratories for Equitable Engineering EducationMr. Marcos Jose Inonan Moran, University of Washington Marcos Inonan is a PhD candidate and research assistant in the Remote Hub Lab (RHLab) of the department of Electrical and Computer Engineering at the University of Washington in Seattle. His research is centered on developing remote laboratories with a lens of equitable access to engineering education, and driven by his commitment to promote diversity, equity and inclusion in STEM education. In addition to his research on remote
Paper ID #43693Refining Flow Characterization Desk-Scale Experiments and Blended Learningin Engineering Education: A Framework for AssessmentDr. Fernando Merida, University of Florida Fernando Merida is an Instructional Assistant Professor in the Chemical Engineering Department at University of Florida. He is the Director of the Unit Operations Laboratory, currently working on the development platforms to enhance the instruction of Unit Operations LaboratoriesDr. Sindia M. Rivera-Jim´enez, University of Florida ©American Society for Engineering Education, 2024 Refining Flow Characterization Desk-Scale
platform for programming, design and measurement in a freshman engineering course." 2011 ASEE Annual Conference & Exposition. 2011.[4] Hamrick, Todd R., and Robin AM Hensel. "Putting the fun in programming fundamentals- robots make programs tangible." 2013 ASEE Annual Conference & Exposition. 2013.[5] Daugherity, Michael. "Introducing programming and problem solving with arduino-based laboratories." 2019 ASEE Annual Conference & Exposition. 2019.[6] Geddis, Demetris, Brian Aufderheide, and Herman Colquhoun. "Work in Progress: Project and Design-Based Introductory Engineering Course using Arduino Kits." ASEE Annual Conference. 2020.[7] Belfadel, Djedjiga, et al. "Use of the Arduino
a rescue drone. The next research/design challenge istransforming the cargo drone to a personal air vehicle (PAV) with a pilot/passenger on board.What follows is the section on previous work addressing experiential and project-based learning(PBL), senior projects, vertically integrated projects (VIPs), and eVTOLs state-of-the-art.Previous Work Over 85 years ago, Dewey [1], one of the founders of modern educational thought,recognized that practical laboratory experiences and projects are important parts of learning.Moreover, Kolb’s Experiential Learning Cycle (KLC) [2] teaches that learners learn best whenthey follow a cyclical process consisting of four steps: experiencing, watching, thinking/modeling,and applying/doing. This makes
Mechatronics Actuator Education Platform for Active Learning CurriculumAbstractThis paper discusses the design and construction of a multi-actuator, open-source educationplatform to enhance undergraduate mechatronics laboratory curriculum experience in the topicarea of actuator technologies. Utilizing hands-on learning as the primary pedagogical approach,students gain applied knowledge in mechatronics by fostering the development of criticalengineering skills. The proposed laboratory curriculum encompasses an all-in-one mechatronicsactuator test platform for the study of fundamental actuator technologies, including a directcurrent brushed motor, stepper, and radio control servo motor that is generally taught in anundergraduate mechatronics
leveraging technology to enhance learning experiences and broaden access to engineering education. He has experience as a practicing engineer and has taught at the university and community-college levels. ©American Society for Engineering Education, 2024 Work-in Progress: Aligning an Engineering Hands-On Learning Program to College Strategy: Reducing Implementation Barriers to Support Faculty, Students, and Their SuccessAbstractThis Work in Progress addresses two of ELOS’ requested foci: pedagogy and best practices oflaboratory courses and hands-on laboratory instruction. We describe a redesign plan in theIntegrated Teaching and Learning Program (ITLP) at University of Colorado Boulder