Paper ID #30296Repurposing of a Nuclear Integrated System Test Facility forEngineering EducationDr. Hector E. Medina, Liberty University Dr. Medina is a Professor of Mechanical Engineering at Liberty University (Lynchburg, Va.). He obtained a B.Sc. in Engineering from the Colorado School of Mines, and both an M.Sc. and Ph.D. in Mechani- cal and Nuclear Engineering from the Virginia Commonwealth University. Prior to graduate school, he worked in the oil industry and 7-12 education, in his native Venezuela and Aruba. Since 2012, he has published and presented about forty articles in peer-review journals and conference
sufficiently modest—we may have asolution for you! If this describes your motivations, we invite you to read on.Various authors have confronted the problem of semiconductor curve tracing in theundergraduate electronics laboratory and have described their work in ASEE conferences. Wethus turn to the work of those who have gone before, of the giants upon whose shoulders wepropose to stand.A curve-tracing system for pn diodes, NPN and PNP BJTs, and n-channel MOSFETs relied uponLabVIEW running on a desktop computer and laboratory instruments (power supply andvoltmeter) communicating with the program through a GPIB (General-Purpose Instrument Bus)connection.1 While the system was successfully integrated into the curriculum, it had thedisadvantage of being
had an enthusiastic response fromstudents interested in both Robotic projects and interest in learning more about Robotics. Roboticsis an interdisciplinary field that incorporates the integration of many systems in software,electronics, control systems, actuators and sensors. The Robotics of today imparts the mostimportant attributes such as the nature of motion, the motions available to rigid bodies and the useof kinematic constraints to organize motion. Because the growing field of Robotics covers manyareas of EET education we decided we would develop curriculum for an introductory course inRobotics. This paper explores the curriculum design and the Lie Algebra and Lie Group that arekeeping track of the variables involved in arm robotic
Paper ID #11219Designing of Bottle Washing Machine in Virtual Environment Using the En-hanced Mechatronics System Design MethodologyMr. Rizwanul Neyon, Purdue University Calumet (College of Technology) Rizwanul Neyon, M.Sc, has completed his masters from Purdue University Calumet majoring in Mecha- tronics Engineering Technology. In his MS Directed project he worked in a Pick & Place machine where he has integrated a Programmable Logic Controller (PLC) & Human Machine Interface (HMI). He was awarded a graduate assistantship from Purdue University Calumet in 2012. As a graduate assistant in engineering Technology
European Conference on (pp. 353-358). IET.5. Ioannides, M. G. (2004). Design and implementation of PLC-based monitoring control system for induction motor. IEEE transactions on energy conversion, 19(3), 469-476.6. Armstrong, R. W. (1998). Load to motor inertia mismatch: unveiling the truth. In Drives and Controls Conference.7. Akram, Hossian. (2011)-352: Integrating Servomotor Concepts into Mechatronics Engineering Technology Curriculum Emphasizing High Speed Packaging Machinery8. Merzouki, R., Davila, J. A., Fridman, L., & Cadiou, J. C. (2007). Backlash phenomenon observation and identification in electromechanical system. Control Engineering Practice, 15(4), 447-4579. Li, Huaizhong., Le, M. D., Gong, Z. M., & Lin, W. (2009
for a greater diversity oftraining setups to be utilized in a smaller area.IntroductionIn order to effectively teach instrumentation, mechatronic and robotic courses in an Engineeringor Engineering Technology curriculum, a variety of electromechanical laboratory setups aredesirable. [1] Exposing students to an assortment of technologies is also desirable, to give themas broad an experience as is reasonable. Thus, setups containing different sensors, effectors andactuators and indicators are needed. Quite often, the cost of such laboratory setups (or trainers) ishigh, thereby challenging the desire to have numerous full setups.To broaden the students’ programming capabilities, many programs teach such courses acrossboth microcontroller and
and Mechanical EngineeringAbstractAs part of the Mechanical and Aerospace Engineering curriculum, Embry-Riddle AeronauticalUniversity (Prescott, AZ) has developed a combined lecture / laboratory (lab) course to givestudents an introduction to the fundamental principles of instrumentation and tools necessary toperform measurements while reducing the data obtained. This Measurements andInstrumentation course will provide essential knowledge and skills that students can use forcomplimentary engineering lab courses such as Thermal Fluid Sciences [1], Experimental SpaceSystems, and Experimental Aerodynamics as well as during their yearlong capstone course andnumerous student clubs / research activities.Topics covered in this course are measurement
Mechatronics Curriculum and Packaging Automation Laboratory Facility. In 2010 he as Co-PI received NSF-ATE grant entitled Meeting Workforce Needs for Mechatronics Tech- nicians. From 2003 through 2006, he was involved with Argonne National Laboratory, Argonne, IL in developing direct computer control for hydrogen powered automotives. He is also involved in several direct computer control and wireless process control related research projects. His current interests are in the area of packaging machinery system design & control, industrial transducers, industrial process control systems, modeling and simulation of Mechatronics devices and systems in virtual environment, programmable logic controllers, programmable logic
characteristics of diodes, Zenerdiodes, MOSFETs, and BJT using no ancillary equipment apart from the myDAQ (and hostcomputer) and the device(s) under test. It is constructed with an inexpensive single-sidedprinted-circuit board and uses readily-available components. LabVIEW programs that automatethe display of families of IV curves for MOSFETs and BJTs are under development. Completeschematic diagrams and PCB artwork are available for easy replication. This paper will describethe curve tracer, supporting programs, and examples of its application in the laboratoryenvironment.IntroductionThe study of electronics is a core component of the electrical engineering curriculum. To thefoundation of circuit analysis, the study of electronics introduces students
topic. This paper presents an overview of the development cycle of the portable PLC trainingunits to be used in the engineering technology curriculum. The paper also provides a summary oflab activities developed for the new trainers.MotivationThe assembly and usage of these B&R trainers will be of immense help to students in themechatronics program. Instructors are taught to instruct how to control circuits, using step rationaleand organized content. Programming essentials such as variable revelation, code structure,programming hones, and programmable incitation will be taught to the students. Other importantPLC topics such as inner clocks, outer sensors, CPU, and correspondence modules will be coveredas well.In addition, the new trainers
Professional Standards Commission/Council for the Accreditation of Educator Preparation. Her teaching experience spans across secondary, adult, technical and higher education. She has presented at state, regional, national and international conferences and has several publications. She has served on ac- creditation committees, K-12 school committees and local community boards and received and managed over two million dollars in federal grants. In addition, Dr. Mosley serves on state and national committees for teacher education.Dr. Mir M. Hayder, Savannah State University Dr. Hayder is an Associate Professor in the Department of Engineering Technology at Savannah State Uni- versity, GA. He received PhD in Mechanical
of thislecture is part of Learning Objective 1 in that the proper selection of measurement systems, thecombination of probes and sensors is a critical part of planning and experimental program. a. b. Figure 2. An example of a probe and a sensor. A pitot static tube (a.) is a probe and a pressure transduce (b.) is a sensor.Numerical Methods (L.O. 2, 3) –While this is not a numerical analysiscourse there are a series of lecturescovering the use of numerical methodsfor experimental data reduction. Theselectures cover topics such as numericalerror, numerical integration, finding rootsof equations, Fourier series andfrequency analysis, and curve
systems play an integral role in large-scale processes for interfacing with transducers and machinery for real time control and dataacquisition. The increasing demand to integrate SCADA systems with remote networks andInternet of Things (IoT) technologies has raised concerns for information security specialists.These systems are thought to have notable security vulnerabilities and may be subject to anincreasing number of cyber threats. In this paper/project, several students from Sam Houston StateUniversity design and deploy a SCADA laboratory to better understand these systems and theinherent security threats that go with them. The details including system infrastructure, challengesfaced during the establishment of the laboratory, student and
Paper ID #11218PROGRAMMING A SIX AXIS MOTOMAN HP3C ROBOT FOR INDUS-TRIAL SORTING APPLICATIONMr. Hamza Kadir, Purdue University Calumet (College of Technology) Alumni Hamza Kadir, M.Sc., currently works as a Controls Engineer in the Packaging Machinery OEM indus- try. He completed his Masters from Purdue University Calumet, majoring in Mechatronics Engineering Technology. He conducted his M.Sc. Directed Project at the Nick and Nancy Wilson Mechatronics En- gineering Technology Laboratory. This project involves integration of modern automation tools for an intelligent part sorting system. He has previously worked with use of
scholarships/stipends, summer teaching internships,structured field observation experiences, and rigorous teacher-preparation curriculum to preparethem to be successful, long-term members of the STEM teaching faculty in the SavannahChatham County Public School System (SCCPSS) and beyond. In partnership with SCCPSS, theproject team will provide post-graduation mentoring and follow-up to ensure a successfultransition to teaching and improve retention. Specific elements of the program include thefollowing: 1. Launching an aggressive recruitment plan for talented math and engineering majors to pursue teaching careers in 6 -12 secondary schools; 2. Implementing a comprehensive STEM teacher training program; 3. Providing Summer Educational
are connected (or short circuited). The two vertical columns at eachside are connected, and they are usually used as positive and negative power rails. If one flips overthe breadboard and looks at the metal connections, the student will have a better idea of howelectrical components should be placed on the board, in particular how an IC (integrated circuit,with multiple pins) component should be placed. Figure 1. Breadboard and illustration of connections.2 Mention of specific trade names is for reference only and not to imply exclusion of others that may be suitable.Using the NI myDAQ as an Oscilloscope and Controller with Bread Boarded CircuitsOften, it is necessary to integrate a breadboard with a simple