geography, the profile of engineering graduate attributes appear to follow the samepattern, i.e., engineering graduates should be knowledgeable in science and technologyfundamentals and be problem solvers, but should also possess a number of professional skills(i.e., “soft skills”) important for the profession such as effective communication andunderstanding the world where engineering is practiced (business constraints,flexibility/adaptability, societal and ethical issues, global sensitivity, etc). Numerous student-focused events on a variety of curriculum, policy, and pedagogical issues conducted by one ofthe authors have yielded similar conclusions.Some authors and reports have comprehensively outlined the elusive set of “soft skills” that
experience the benefits that will last alifetime. (3)III. The Mentor as a FriendSome academics believe and advice strongly in maintaining a business-like relationshipbetween mentors and mentees. They claim that: a professor should not have any casualrelationships with students, and such relationships “conflict with our fundamentalobligations as faculty members,(4) and the ethics of the relationship require that thefaculty member remains “dispassionate,” avoiding any appearance of partiality. Thefaculty member should “not seek to be their psychiatrist, friend, or lover.” (5) While someof us may agree about the psychiatrist and lover part, many of us do not agree thatfriendship between students and faculty members has ill effects and should not
, processes, projects, networks)-operation (doing = active action)-in the real world (not in model world),-based on positive feelings (enthusiasm, love, hope, compassion, respect, faith, humor) by-selected (not all),-internally-driven (committed)-people (not organizations), who can-manage wholes (operative, tactical and strategic levels) and possess-continuously renewed knowledge and skills (mental models) and-adequate information (external models of different forms),-adequate resources (money),-adequate time (key people), and-efficient tools (concrete and abstract tools, technology) within-physical,-environmental, and-ethical constraints.The checklist includes 23 items. The list is multiplicative in nature: in case one of the pointsis missing, the
, which has been funded by the NSF, Department of Ed, Sloan, EIF, and NCIIA. Dr. Sacre’s current research focuses on three distinct but highly correlated areas – innovative design and entrepreneurship, engineering modeling, and global competency in engineering. She is currently associate editor for the AEE Journal.Dr. Larry J. Shuman, University of Pittsburgh Larry J. Shuman is Senior Associate Dean for Academic Affairs and Distinguished Service Professor of industrial engineering at the Swanson School of Engineering, University of Pittsburgh. His research focuses on improving the engineering education experience with an emphasis on assessment of design and problem solving, and the study of the ethical behavior of
include identification of existing or easily modifiable courses,which can be used as units in the RSIC curriculum. The case study will also include a descriptionof the laboratory infrastructure, necessary administrative procedures (admission, scheduling, andcredit transfer), an assessment methodology, and experimental development and delivery of aselected RSIC unit within the partners’ institutions. This experimental concurrent delivery willnot include student mobility and engage only on-site students.Educational Objectives and OutcomesThere is a general agreed upon set of non-technical skills and behaviors expected fromengineering school graduates (oral and written communications, professional ethics, team skills,etc.). The starting point for
yearcollege students was higher for females than males, and higher for minorities than whites.2However, traditional engineering curricula do not tend to emphasize the service-aspects of theprofession, leading to non-retention of students who are motivated by these goals.At the University of Colorado at Boulder, two programs are particularly interested inhighlighting service opportunities in engineering. In the EVEN B.S. degree program, one of theeducational objectives is to produce students who, within 3 to 5 years after graduation, “haveserved the needs of our society and protected the future of our planet in an ethical manner.” In Page
the higher level educational systems in the developing world. Thispaper will discuss in detail the efforts that have been expended to bring NMAA to thepoint where it is and address the challenges that remain, with special emphasis on theengineering program. The authors will also address the implications of these lessons forthe broader endeavor of educational capacity-building in the developing world. Whileeach country and culture offers its own unique challenges and opportunities, we feelseveral lessons we learned have universal applicability. Among the topics discussed willbe the use of face-to-face and distance mentoring, cultural and ethical challenges, facultydevelopment, providing resources and equipment, and ensuring the continuity
guidelines provided by the U.S. Accreditation Board forEngineering and Technology (ABET) and the Institution of Professional Engineers New Zealand(IPENZ). Six professional skills defined by ABET in their accreditation criteria are6 : Page 14.973.2 ≠ an ability to function on multi-disciplinary teams; ≠ an understanding of professional and ethical responsibility; ≠ an ability to communicate effectively; ≠ acquire the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context; ≠ recognition of the need for, and an ability to engage in life
scales of the EGPI are GlobalEngineering Ethics and Humanitarian Values; Global Engineering Efficacy; EngineeringGlobal-centrism; and Global Engineering Community Connectedness. At the post-test, theinternational research students scored higher than domestic students on three of the four scales(all except Engineering Global-centrism). Similarly, the international research students improvedthree of their four scales from pre-test to post-test (Global Engineering Ethics and HumanitarianValues; Global Engineering Efficacy; and Global Engineering Community Connectedness); thedomestic students decreased on all four scales. Fleming, Burrell, Patterson, Fredericks, andChouikha (2014) examined Howard University undergraduate students who participated in
Citizens Engineering Students preparedness for working globally Evaluation of learning programsIt should be noted that developing assessment and evaluation methods in this area is inherently complex,given the list of areas to be investigated, including ethics, social norms, global difference along withstudents own biases based on culture, racial and ethnic position, socio-economic status etc. [12] Thereare also research philosophy and methodological issues to consider, most qualitative measures of globalpreparedness or awareness are by nature, self-efficacy which may call into question the level of ability ofstudents to self-assess given their respective levels of experience. As an example, a recent study into theEWB-USA chapter at
engineering ethic. My academic interests have changed. Teamwork skills. Skills 10 Academic research skills. Critical thinking skills. I learned more about another country’s economy, political perspectives, culture, history, religion, education and food, etc. Attitudes 14 Ability to understand and interact with people from diverse cultural and ethnic backgrounds. Capability to adapt to a new environment (a new
and their consent should be taken. Ensure to inform family anduniversity in timely manner about your safety and progress while in field. While exiting researchsite it is important to leave on a good note and this will help in any future field work. Also tryany opportunity to learn about the culture, remember field research is not just about how peopledo things to perform specific tasks, which is your area of research, but what are the externalfactors, which effect people and motivate to work in that manner.Research ethics It is important to maintain the research ethics for maintaining integrity, validity andsecuring participant identity in the research2. Researchers need to abide by the University IRBrequirement. The entire
Engineering Students in the Arab WorldAbstractThe STEPS Program (Strategies for Engineering Problem Solving) at the Petroleum Institute inAbu Dhabi introduces second-year student design teams to authentic engineering problemsolving in the 21st century, with special emphasis on environmental and humanitarian issuesfacing engineers in both our local and broader global communities. The responsibilities ofprofessional global engineers is stressed, including stewardship of our planet and its resources;the health, safety, and welfare of its inhabitants; engineering ethics, and interculturalcommunication. Student teams are mentored through an “experience” of engineering designmethodology that incorporates creativity and inventiveness, technical thinking
’ peers; Beliefs concerning the nature of professional engineering work; The social status of the engineering profession. This has a wider dimension which embeds the social as well as industry evaluation of engineering as an occupational group and touches upon issues of professional autonomy, social orientation and inclusion of ethics in the course of professional practice; Knowledge base and intellectual abilities required prior to undertaking studies in engineering; and Teaching and Learning in schools and faculties of engineering. Prospective students often rely on indirect information from their peers, friends and siblings who are or have studied engineering. These opinions are influenced by engineering academic beliefs and perceptions of
approximately 2,900 undergraduate students and almost 800 graduate students inover 20 programs.The Educational Model for Engineering 1 ProgramThe first year engineering program at McMaster University is common for all students. In thisyear, students are expected to complete 13 courses: Calculus 1 and 2, Linear Algebra, Physics 1and 2, Engineering Computing, Engineering Graphics, Chemistry 1, Introductory MaterialsScience, Engineering Professionalism and Ethics, and two complementary study electives. Page 13.487.2Engineering Computing, Engineering Graphics, and Professionalism and Ethics are alladministered through the Engineering 1 Program.Although the
need to become global engineers, but the National Academy ofEngineering2 predicted that, among other attributes, “the engineer of 2020 will have tounderstand how to adapt solutions, in an ethical way, to the constraints of developingcountries.”The Accreditation Board for Engineering and Technology (ABET) encourages educationalprograms to develop their own learning outcomes that are consistent with each individualprogram's educational objectives. However eleven outcomes (a-k) 3 are required of all accreditedU.S. engineering programs, including one that says programs must demonstrate that theirstudents attain “the broad education necessary to understand the impact of engineering solutions
secondday of the program. The project requirements and team collaboration ethics were emphasized.Since the project required the use of CAD software, teams were arranged in such a way that atleast one of team members was familiar with a CAD software package.Each OU ME student was randomly assigned to work on a team with two Chinese students on adesign project as part of their senior design project. Since a full time faculty member was withthe students full time in China, the amount of interaction between the student groups and thesupervising faculty was significant. Informal meetings were held with each student group nearlyeveryday in China. After they returned from China, students continued to work on this project,and finished their design by the
ability to think critically frommultiple perspectives, to be stringent in their application of ethical standards, and to be creativeand innovative. Our implementation case study demonstrates how to contextualize andoperationalize design thinking at regular course level to facilitate the development of globalcitizenship in engineering students. We hope this work has answered the vital question of “whatcan engineering educators do for sustainable development?” and prompt further discussion onengineering education for sustainable development.Background and Literature ReviewEngineering education for sustainable developmentEngineers are entrusted by the public to apply their professional knowledge and skills to innovate,design and implement solutions
interests are in renewable energy applications, fluid-thermal sciences, and international education.Dr. Shannon N. Conley, James Madison University Shannon N. Conley is an assistant professor in the Bachelors Program in Integrated Science and Tech- nology (ISAT) at James Madison University. She holds a PhD in Political Science from Arizona State University, and her research and teaching focus on social, policy, and ethical issues related to emerging science and technology. Additionally, her previous and current work focuses on the development and implementation of tools and approaches for socio-technical integration across disciplines. Conley also conducts research in pedagogy and responsible innovation, participates in the
therefore might provide the most useful data for addressingthe research question.Table 2. Prompts given on different days of the trip Trip day Prompt 1 What are your expectations for the trip? 6 What differences have you seen with respect to business, culture, and technology between Italy and Switzerland? 8 What role do you think ethics should play in your role as an engineer? 11 What differences have you seen with respect to engineering business, culture, and technology between the companies you’ve seen and the United States? 14 What are your immediate takeaways from this international experience?The qualitative data were analyzed using the software NVivo. Four
produce during their college careers. By the end of thecourse, students should be more mature in their understanding and use of language, shoulddevelop efficient writing processes, and should know and demonstrate the qualities of effectivecomposition in a given rhetorical situation. Prerequisites: A passing grade on the Writing SamplePlacement Test.CEE 111. Information Literacy and Research. 2 Credits.This course will introduce students to the needs, access, evaluation, use, impact and ethical/legalaspects of information, as well as to the application of information literacy and research in thefields of civil and environmental engineering. Prerequisite: ENGN 110MAE 111. Mechanical and Aerospace Engineering Information Literacy and Research. 2
AC 2012-4834: DEVELOPING A PERVASIVE, COLLEGE-WIDE APPROACHTO INTEGRATING ACHIEVEMENT OF GLOBAL COMPETENCE INTOTHE CURRICULUMDr. Gregg Morris Warnick, Brigham Young University Gregg M. Warnick is the Director of the Weidman Center for Global Leadership and Associate Teaching Professor of engineering leadership within the Ira A. Fulton College of Engineering and Technology at Brigham Young University (BYU). He works actively with students and faculty to promote and develop increased capabilities in global competence and leadership. His research and teaching interests include globalization, leadership, project management, ethics, and manufacturing processes. Prior to joining BYU, Warnick worked for Becton Dickinson, a
/Continuous/Major Change o Thinking Both Critically and Creatively - Independently and Cooperatively Curiosity and Desire to Learn - For Life (Show initiative, Inquire & Learn) o Seeking Advice and Forming Daily Questions to Discover New Insights. o Commitment to Quality, Timeliness, and Continuous Improvement o Understanding Basic Project and Risk Management and Continuous Improvement Concepts (like LEAN+) Ethical Standards and Professionalism o Operate in Accordance With Acceptable Business, Societal, and Professional Norms o Maintain the Highest Level of Integrity, Ethical Behavior, and Professional Competence o Understand and Applies Good Personal JudgmentAt the ASEE Annual
the challenges faced bya typical faculty, as they are few in number. The following paragraphs discuss the variouschallenges faced by faculty.Faculty experience high levels of stress during their probationary years, working towards theirtenure [2], [3]. Of the many requirements for tenure, the requirement of sufficient publications isa tough one to achieve given all the new teaching assignments, student advising, service,research and more. One of the hurdles faced by new faculty is to publish, hence knowledge ofmechanisms to improve scholarship of publications will aid in achieving their goal to securetenure. In addition, ethical considerations of scholarship of publications has to be taken intoaccount when discussing scholarship of publishing
emphasized: 1. “Global problems of the modern society. Culture, cultural value and cultural identity 2. “Technological breakthrough in the context of globalization” 3. “Ethics of communication in the modern society” 4. “Outstanding international scientists” 5. “Tolerance as an essential quality of an individual and a specialist in the modern society” 6. “Specialist of the 21st century”.Using the “Specialist of the 21st century” as an example, this theme can be integrated as amodule in the engineering disciplines. The purpose is to form self-determination, global andsocial awareness, and decision making through the social interactions within a group of highschool students through the completion of the following steps. In the first
participants. ABETguides many such studies in the States, most notably through its infamous Criteria A-K (ABET 2007).Of these criteria, roughly half (an ability to function on multidisciplinary teams; an understanding ofprofessional and ethical responsibility; and ability to communicate effectively; the broad educationnecessary to understand the context of engineering solutions; a recognition of the need of life-longlearning; and a knowledge of contemporary issues) are more challenging to implement, and seemeaningful outcomes, in traditional engineering programs. D80 programs are infused withexperiences that enrich students with these skills, abilities, and attitudes while building on the “easy
, Mayagüez. His research interests include nonlinear structural mechanics, biomechanics, engineering education, and engineering ethics (with particular interest in appropriate technologies to serve impoverished and developing communities). He is an active member of the American Society for Engineering Education (ASEE), American Society of Civil Engineers (ASCE), and Association for Practical and Professional Ethics (APPE). He holds BS degrees in Civil Engineering and Mathematics from Carnegie Mellon University, and a PhD in Theoretical and Applied Mechanics, Cornell University. He was previously a faculty member in the Department of Civil Engineering & Mechanics at the University of
strategic marketing course initially refreshes the marketing infrastructure bybriefly highlighting some selected principles, concepts, tools, processes, theories, issues, debates,real-life practices and ethics of marketing based on the following definition of marketing: Page 11.209.5 “Marketing is an organizational function and a set of processes for creating, communicating, and delivering value to customers and for managing customer relationships in ways that benefit the organization and its stakeholders” [6].The focus of this course eventually becomes a marketing strategy exercise filled with tacticaldetails. Through a computer
working.Specifically, outcome 2 is that they would demonstrate “an ability to apply engineering design toproduce solutions that meet specified needs with consideration of public health, safety, andwelfare, as well as global, cultural, social, environmental, and economic factors [1].” Outcome 4requires “an ability to recognize ethical and professional responsibilities in engineering situationsand make informed judgments, which must consider the impact of engineering solutions inglobal, economic, environmental, and societal contexts.” Arguably outcomes 3 and 5, whichexpect that engineering graduates demonstrate the abilities to communicate with a range ofaudiences and to work effectively as team members, also require a working understanding ofmulticultural
the School. Pat teaches leadership, ethics, sustainabil- ity, and study abroad courses. She has held a number of leadership roles in the American Society for Engineering Education (ASEE) including four terms on the ASEE Board as well as serving two times as the Chair of Engineering Technology Council. Pat is a Fellow of ASEE. Her research interests include sustainability and study abroad education.Shawn Patrick Shawn Patrick is the Faculty Development Program and Evaluation Director of the Indiana University (IU) School of Medicine Dean’s Office of Faculty Affairs and Professional Development. Shawn is also an associate faculty in the Department of Technology Leadership & Communication through the Purdue