Asee peer logo
Displaying results 31 - 60 of 321 in total
Conference Session
Innovative K-12 Engineering Programs
Collection
2008 Annual Conference & Exposition
Authors
Gisele Ragusa, University of Southern California; Michael Khoo, University of Southern California; Ellis Meng, University of Southern California; Joseph Cocozza, University of Southern California
Tagged Divisions
K-12 & Pre-College Engineering
expertise of an urban school of engineering, school ofmedicine and school of education. The BMERET program has provided middle schooland high school science teachers in urban settings with opportunities to engage withpremiere researchers in BME laboratory settings at a top tier research university. Withthe combined expertise of the BME scientists and education faculty, BMERET teacherparticipants are creating powerful curriculum to use in their middle school and highschool science classrooms. The teacher participants have experienced greater scienceteaching efficacy then their non-participant teacher peers, which may be as a result of thecollaborative RET experience. Sixth through twelve grade teachers have benefited greatlyfrom bringing the BME lab
Conference Session
K-12 and Pre-College Engineering Division Curriculum Exchange
Collection
2014 ASEE Annual Conference & Exposition
Authors
Patricia Carlson, Rose-Hulman Institute of Technology; Ryan Smith
Tagged Divisions
K-12 & Pre-College Engineering
Paper ID #10212Using Engineering to Address the Common Core Standards: A Four WeekWorkshop (Curriculum Exchange)Dr. Patricia Carlson, Rose-Hulman Institute of Technology Dr. Patricia ”Pat” A. Carlson is a transplanted middle westerner, having spent her childhood in Norfolk, Va. She came to Rose-Hulman Institute of Technology early in her teaching career and has taught a variety of courses over the past three decades. Dr. Carlson has held a number of American Society for Engineering Education summer fellowships that have taken her to NASA-Goddard, NASA-Langley, the Army Research Laboratory in Aberdeen, Maryland, and
Conference Session
Curriculum Exchange
Collection
2015 ASEE Annual Conference & Exposition
Authors
Nancy Ruzycki, University of Florida
Tagged Divisions
K-12 & Pre-College Engineering
Paper ID #12946Curriculum Exchange:Framing Engineering – Templates to aid in instruc-tional designDr. Nancy Ruzycki, University of Florida Director of Undergraduate Laboratories, Faculty Lecturer, Department of Materials Science and Engi- neering Page 26.434.1 c American Society for Engineering Education, 2015Target Grade Level: K-12Designed for: Teachers, Content Coaches, Instructional Specialists, CTE leaders, CurriculumDesignersBackgroundFraming routines are a widely used literacy strategy to support
Conference Session
Exemplary Outreach Programs in Engineering Education
Collection
2009 Annual Conference & Exposition
Authors
Gisele Ragusa, University of Southern California; Joseph Cocozza, University of Southern California
Tagged Divisions
K-12 & Pre-College Engineering
participate in research. It has threemajor programmatic goals: (1) To provide biomedical engineering research training experiencesto talented undergraduates, with an emphasis on training women and members ofunderrepresented minorities, to develop a diverse, internationally competitive, and globally-engaged biomedical engineering workforce. (2) To provide hands-on laboratory experiences forundergraduate student participation in cutting edge biomedical engineering research facilitatingthe learning of research methods, laboratory skills, and problem solving in premiere researchlabs with BME foci. (3) To facilitate learning beyond biomedical science with community-basedoutreach foci with training on issues related to research ethics, organizational
Conference Session
K-12 and Pre-College Engineering Division Curriculum Exchange
Collection
2014 ASEE Annual Conference & Exposition
Authors
Andrew Tubesing, University of St. Thomas
Tagged Divisions
K-12 & Pre-College Engineering
Paper ID #9355LEDs & Lamps – A Friendly Affordable Gateway to Electrical Exploration(Curriculum Exchange)Mr. Andrew Tubesing, University of St. Thomas Andrew Tubesing is Laboratory Manager for the Electrical Engineering program at University of St Thomas in St. Paul, MN. He also serves on the faculty of the UST Center for Pre-Collegiate Engineering Education. Andrew has taught university courses in circuits, electronics, and engineering design for more than a decade. Prior to his academic career, Andrew spent 12 years as an engineer in the broadcast and telecommunications fields. Andrew holds a BA from St. Olaf College
Conference Session
K-12 & Pre- College Engineering Division Poster Session
Collection
2015 ASEE Annual Conference & Exposition
Authors
Michael Andrew Albright, South Carolina Governor's School for Science and Mathematics; Karen R. Den Braven, South Carolina Governor's School for Science and Mathematics; Elaine R. Parshall, SC Governor's School of Science and Mathematics
Tagged Topics
Diversity
Tagged Divisions
K-12 & Pre-College Engineering
high schools.Providing students with enhanced opportunities for collaboration, social engagement, andresearch, the program’s model of integration requires networking across disciplines and physicalspace. Students participate in real-time, in-person and virtual lectures, as well as week-longsummer camps and Saturday experiences for hands-on activities, team-building, interaction anddiscussion, and problem-solving. Science courses meet two Saturdays a semester to completehands-on laboratories. These are complemented by in-class laboratory demonstrations andonline, virtual laboratory activities. Presently, instructors are developing an integrated set ofdesired outcomes and assessment tools informed by ABET accreditation standards. Areas
Conference Session
Promoting Scientific and Technological Literacy
Collection
2006 Annual Conference & Exposition
Authors
Scott Douglas, Southern Methodist University
Tagged Divisions
K-12 & Pre-College Engineering
engineering. The curriculum consists of (1) a course text, (2)integrated laboratory exercises with real-time signal processing hardware, (3) summerteacher training institutes, and (4) a web community portal for information sharing(www.infinity-project.org). Started in 1999, the Infinity Project is in over 150 highschools across twenty-five states and is garnering some interest in other countries acrossthe world as an innovative educational intervention to promote and increase awareness ofengineering and technology education in young people today.While careful assessment and tracking of pre-college student populations on a large scaleis challenging – see the comments in Section 4 of this paper – the Infinity Project attractsboth students and teachers
Conference Session
Engineering Collaboration: Faculty and Student Involvement in K-12 Programs
Collection
2009 Annual Conference & Exposition
Authors
Robin Autenrieth, Texas A&M University; Karen Butler-Purry, Texas A&M University; Cheryl Page, Texas A&M University; L. Diane Hurtado, Texas A&M University; Jennifer Welch, Texas A&M University
Tagged Divisions
K-12 & Pre-College Engineering
used to continuously improvethe program experience and impact. It should be noted that this is not a research project, and assuch, there are neither research questions nor a research design. However, the E3 program hasgoals and anticipated outcomes, and has used qualitative questions to measure these outcomes.The program has become more refined and impact is being felt through the state. Teachers arerecruited from targeted schools, but the application is open to all teachers. Selection is rigorousand competition for available positions has intensified. Selected secondary (grade 8-12) science,technology, engineering, and math (STEM) teachers work in teams of 2 with engineering facultyin his/her laboratory during a 4-week summer residential
Conference Session
Elementary School Engineering Education
Collection
2006 Annual Conference & Exposition
Authors
Karen High, Oklahoma State University; Caroline Beller, Oklahoma State University; Pamela Fry, Oklahoma State University; Adrienne Redmond, Oklahoma State University
Tagged Divisions
K-12 & Pre-College Engineering
Science and Engineering?AbstractDr. Karen High, faculty member in Chemical Engineering, was a Laboratory Instructorfor the fall 2005 Semester for CIED (Curriculum and Instruction Education) 4353 atOklahoma State University. The course is “Science in the Elementary SchoolCurriculum.” This course covers the purposes, selection and organization of content,teaching and learning procedures and evaluation of outcomes in elementary schoolscience and its participants consist of education students typically without anybackground in engineering or science.Approximately 75% of class time is devoted to laboratory activities and field experiencesthat promote the science content, process, learning theory, philosophy and curriculaappropriate for grades 1-8
Conference Session
CEIII Wrapup
Collection
2013 ASEE Annual Conference & Exposition
Authors
Sandra Hull Seale, UCSB; Thalia Anagnos, San Jose State University
Tagged Divisions
K-12 & Pre-College Engineering
Paper ID #6569Curriculum Exchange: Visualization Tools and Online Courses for Teachingabout EarthquakesDr. Sandra Hull Seale, UCSB Dr. Seale earned the B.S.E. in Civil Engineering from Princeton University in 1981, the S.M. in Civil En- gineering from MIT in 1983, and the Ph.D. in Civil Engineering from MIT in 1985. Dr. Seale is currently working as the Project Scientist and Outreach Coordinator for the Seismology Research Laboratory at UC Santa Barbara.Dr. Thalia Anagnos, San Jose State University Dr. Thalia Anagnos is a professor in the General Engineering Department at San Jose State University, where she has taught
Conference Session
K-12 and Pre-College Engineering Division Poster Session
Collection
2014 ASEE Annual Conference & Exposition
Authors
Charles Lam, California State University, Bakersfield; Melissa Danforth, California State University, Bakersfield; Hani Mehrpouyan P.E., California State University, Bakersfield; Ronald Hughes, CSUB STEM Affinity Group
Tagged Divisions
K-12 & Pre-College Engineering
program was concluded with a robotic arm competition that allowed the students toshowcase their skills in front of faculty, staff, and their parents.In 2012-2013, enhancements were made to the program to include multiple aspects in Engineering.The summer engineering program in 2013 focused on a diverse set of topics in the disciplines ofelectrical, electronics, computer, and mechanical engineering. The program was divided into fourcomponents: 1. The first component provided an introduction to basic electronics with laboratory exercises that focused on the application of electronic components. These laboratories introduced the students to modern engineering measurement equipment, e.g., oscilloscopes, power supplies, and
Conference Session
Teacher and Counselor Professional Development
Collection
2010 Annual Conference & Exposition
Authors
Kenneth English, State University of New York, Buffalo; Deborah Moore-Russo, State University of New York, Buffalo; Thomas Schroeder, University at Buffalo-SUNY; Gilberto Mosqueda, University at Buffalo-SUNY; Sofia Tangalos, University at Buffalo-SUNY
Tagged Divisions
K-12 & Pre-College Engineering
that relate classroom topics to practical application. As a result of their comfort withthe use of information technology, contemporary students and teachers can find traditionalclassroom methods of lecture and guided laboratory experiments limiting. Recently, the need forincreasing the number of students graduating in Science, Technology, Engineering, andMathematics (STEM) fields United States has been recognized as a threat to continued economicdevelopment. This need, coupled with increasing technological literacy, has created anopportunity to leverage leading edge cyberinfrastructure in an outreach program targetingsecondary school teachers. This paper demonstrates the implementation of a targeted outreachprogram that engages pre- and in
Conference Session
Integrating Technical Research into Professional Development and K-12 Classrooms
Collection
2011 ASEE Annual Conference & Exposition
Authors
Muhittin Yilmaz, Texas A&M University, Kingsville; Carlos A. Garcia, Texas A&M University, Kingsville; Tamara D. Guillen, Texas A&M University, Kingsville; David Ramirez, Texas A&M University, Kingsville
Tagged Divisions
K-12 & Pre-College Engineering
research camp restrictions such as specific grade levels, minimum GPAsor a camp fee for the underserved minority population of South Texas, a state with a significantunderserved minority student population18. The end of camp survey verifies the camp outcomesand implies that the research-based outreach camps may have a larger impact on studentperspectives of engineering disciplines. Page 22.49.2The ESF Camp: The high school day-camp aimed to attract students to STEM disciplines byoffering a week-long hands-on advanced research experience for teams of three students on asingle subject under close faculty supervision in university laboratories. The camp
Conference Session
Evaluation: Technology and Tools for K-12 Engineering Education
Collection
2015 ASEE Annual Conference & Exposition
Authors
Joseph D. Steinmeyer, Massachusetts Institute of Technology
Tagged Divisions
K-12 & Pre-College Engineering
component in the curricula we develop, and final projects must involve some form of discrete circuit component. • We have emphasized the concepts of sensors, signals, and signal processing when teaching programming and electronics. Many labs, homework exercises, and activities involve interpreting signals generated by using sensors and circuits of the student’s creation, interpreting those signals using programming, and making design decisions based off of those interpretations. • All laboratory exercises in the first half of the courses are designed to be carried out in groups of two or three, and be significantly open-ended (see Tables 1, 2, and 3). This prepares students for the open-ended
Conference Session
Professional Development Programs for Teachers
Collection
2006 Annual Conference & Exposition
Authors
Kenneth Hunter, Tennessee Technological University; Jessica Matson, Tennessee Technological University; Susan Elkins, Tennessee Technological University
Tagged Divisions
K-12 & Pre-College Engineering
2006-2500: PREPARING FOR EMERGING TECHNOLOGIES: A GRASS-ROOTSAPPROACH TO ENHANCING K-12 EDUCATIONKenneth Hunter, Tennessee Technological University Kenneth Hunter is currently Associate Professor of Basic Engineering at Tennessee Technological University. He received his B.S. and M.S. degrees in mechanical engineering from Tennessee Technological University. He has over 30 years of engineering experience, including positions in academia, industry, the United States Army, a government laboratory, and his own consulting business. He is a licensed P.E. in the State of Tennessee.Jessica Matson, Tennessee Technological University Jessica Matson is currently Professor and Chair of the Industrial and
Conference Session
Computer Science-related Programs
Collection
2012 ASEE Annual Conference & Exposition
Authors
Ning Fang, Utah State University; Karen Nielson, Utah State University; Stephanie M. Kawamura, InTech Collegiate High School
Tagged Divisions
K-12 & Pre-College Engineering
secondary school physics classes,Maria and Romuald 11 found that computer simulations improved students’ understanding ofphysical phenomena as well as analytical and creative thinking skills.In another study, Zacharias and Anderson 12 investigated the effects of computer simulations onstudents’ conceptual understanding of physics, specifically mechanics, waves/optics, and thermalphysics. They presented computer simulations to the students prior to performing real-worldlaboratory experiments. Through pre-post conceptual tests and semi-structured interviews,Zacharias and Anderson 12 found that computer simulations helped students predict and explainthe physical phenomena in subsequent real-world laboratory experiments, and that computersimulations
Conference Session
K-12 and Pre-College Engineering Division Curriculum Exchange
Collection
2014 ASEE Annual Conference & Exposition
Authors
Harry H. Cheng, University of California, Davis
Tagged Divisions
K-12 & Pre-College Engineering
Paper ID #10694C-STEM Curriculum for Integrated Computing and STEM Education (Cur-riculum Exchange)Prof. Harry H. Cheng, University of California, Davis Harry H. Cheng is a Professor in the Department of Mechanical and Aerospace Engineering, Graduate Group in Computer Science, and Graduate Group in Education at the University of California, Davis, where he is also the Director of the UC Davis Center for Integrated Computing and STEM Education (http://c-stem.ucdavis.edu) and Director of the Integration Engineering Laboratory. His current research includes developing computing and robotics technologies and integrate them into
Conference Session
K-12 and Pre-College Engineering Division Curriculum Exchange
Collection
2014 ASEE Annual Conference & Exposition
Authors
Anne Marie Bergen, Cal Poly State University; Katherine C. Chen, California Polytechnic State University
Tagged Divisions
K-12 & Pre-College Engineering
-grade students and their teachers. She went on to become head naturalist at Foothill Horizons and later performed a variety of roles in Oakdale schools, including GATE (Gifted and Talented Education) teacher/coordinator, district science mentor teacher, elementary science special- ist, and district science fair coordinator. During her final ten years in the Oakdale Joint Unified School District, Anne Marie was the District Science teacher /coordinator creating a science program that was laboratory and field based reaching over 2500 students and 120 teachers annually. Currently she is the Sci- ence Teaching Specialist for the Liberal Studies Department, Cal Poly, San Luis Obispo. She has a B.S. in Biology from Cal
Conference Session
K-12 and Pre-College Engineering Division Curriculum Exchange
Collection
2014 ASEE Annual Conference & Exposition
Authors
Justin Michael Hutchison, University of Illinois
Tagged Divisions
K-12 & Pre-College Engineering
Research Fellow and recipient of the University of Illinois Clean Energy Education, Mavis Future Faculty, and Kuehn Fellowships. Page 24.653.1 c American Society for Engineering Education, 2014 Graduate students help to create a discovery-based and cooperative learning experience about clean energy for high school students (curriculum exchange)Target Grade Level: 9-10th grade basic science and 11-12th grade advanced science classes.Authors’Names: Justin M. Hutchison, Alicia Burge, Katie M. HutchisonCorresponding Author: (J.M.H.) 4125 Newmark Civil Engineering Laboratory, MC250, 205 N
Conference Session
K-12 and Pre-College Engineering Division Curriculum Exchange
Collection
2014 ASEE Annual Conference & Exposition
Authors
Mike Ryan, Georgia Institute of Technology; Marion Usselman, Georgia Institute of Technology; Sabrina Grossman, CEISMC: Georgia Tech; Jessica D. Gale; Beth A. Kostka, Georgia Institute of Technology; Nancy Anna Newsome, Georgia Tech - Center for Education Integrating Science, Mathematics, and Computing; Brian Douglas Gane, University of Illinois, Chicago; Jayma Koval, Georgia Tech, CEISMC; Jeffrey H. Rosen, Georgia Institute of Technology
Tagged Divisions
K-12 & Pre-College Engineering
worked as a faculty member of the Biology Department and was Director of the elementary school outreach program in the Office of Science Teaching at Florida State University (FSU). In her 21-year career she has worked with National Oceanic and Atmospheric Association and the National Park Service as a science educator and researcher and has been executive director of multiple non-profit environmental organizations. This experience has given Beth a strong background in grant writing, partnership building, laboratory research, teaching across K-12 and adults, as well as program development and curriculum writing.Miss Nancy Anna Newsome, Georgia Tech - Center for Education Integrating Science, Mathematics, and Com-puting
Conference Session
Enhancing K-12 Mathematics Education with Engineering
Collection
2007 Annual Conference & Exposition
Authors
Celina Bochis, University of Alabama; Steven Hsia, University of Alabama; Pauline Johnson, University of Alabama; Karen Boykin, University of Alabama; Sandra Wood, University of Alabama; Larry Bowen, University of Alabama; Kevin Whitaker, University of Alabama
Tagged Divisions
K-12 & Pre-College Engineering
recovery and minimization, by-product research & development to computer based environmental modeling while interacting with company personnel at all levels as well as with external technical, state and federal agencies, public and private research organizations, and academic institutions. Prior to VMC, Sandy held positions as Engineering Laboratory Manager, Materials Engineer, Construction Services Manager, and Environmental Scientist for a southeastern region based consulting civil engineering firm (1987-90). Early in her career, she performed basic and applied medical and biomaterials research at Southern Research Institute then the University of Alabama at
Conference Session
Thinking Outside the Box! Innovative Curriculum Exchange for K12 Engineering
Collection
2011 ASEE Annual Conference & Exposition
Authors
Blake C. Wade, University of Texas, Arlington and Kennedale High School, Kennedale ISD; Yvette Pearson Weatherton, University of Texas, Arlington; Melanie L. Sattler P.E., University of Texas, Arlington
Tagged Divisions
K-12 & Pre-College Engineering
utilize computer simulations inconjunction with hands-on laboratory experimentation to stimulate their understanding ofengineering concepts. Through a National Science Foundation (NSF) sponsored Research Experiences forTeachers (RET) program at the University of Texas-Arlington (UTA), several high schoolteachers worked with engineering faculty on research problems related to hazard mitigation. Theproject used for the work presented here was entitled “Air Dispersion Modeling: Planning forAirborne Terrorism Releases in Dallas/Fort Worth.” The RET participants used AERMOD, adispersion modeling software based upon Gaussian dispersion principles, to predict the ambientconcentrations of chlorine gas that would result if released from sites near
Conference Session
Integrating Technical Research into Professional Development and K-12 Classrooms
Collection
2011 ASEE Annual Conference & Exposition
Authors
Amy E. Landis, University of Pittsburgh; Christian D. Schunn, University of Pittsburgh; Monica Christine Rothermel, University of Pittsburgh; Scott Shrake, University of Pittsburgh; Briana Niblick, University of Pittsburgh
Tagged Divisions
K-12 & Pre-College Engineering
into research laboratories at the University of Pittsburgh. Thispaper presents an introduction to the RET program and delves into the findings from theinternship portion of the RET Site.The RET Site at the University of Pittsburgh has four main components including curriculumdevelopment for Pittsburgh area high school teachers during an intensive summer experience,teacher implementation of new engineering design units into their courses, an annual designcompetition where the teachers’ students present their projects, and finally high school studentinternships within research laboratories at the University of Pittsburgh. Interns participated inresearch activities with the aim of developing their interest in engineering, developing theirability
Conference Session
The Role of Robotics in K-12 Engineering
Collection
2012 ASEE Annual Conference & Exposition
Authors
Can Saygin, University of Texas, San Antonio; Timothy T. Yuen, University of Texas, San Antonio; Heather J. Shipley, University of Texas, San Antonio; Hung-da Wan, University of Texas, San Antonio; David Akopian, University of Texas, San Antonio
Tagged Divisions
K-12 & Pre-College Engineering
AC 2012-3021: DESIGN, DEVELOPMENT, AND IMPLEMENTATION OFEDUCATIONAL ROBOTICS ACTIVITIES FOR K-12 STUDENTSDr. Can Saygin, University of Texas, San Antonio Can (John) Saygin is an Associate Professor of mechanical engineering and a research investigator in the Center for Advanced Manufacturing and Lean Systems (CAMLS) at the University of Texas, San Antonio (UTSA). He is also the Director of the Interactive Technology Experience Center (iTEC) and the Director of the Manufacturing Systems and Automation (MSA) Laboratory. He received his B.S. (1989), M.S. (1992), and Ph.D. (1997) degrees in mechanical engineering with emphasis on manufacturing engineering from the Middle East Technical University, Ankara, in Turkey. In
Conference Session
Outreach to K-12 Females
Collection
2013 ASEE Annual Conference & Exposition
Authors
Muhittin Yilmaz, Texas A&M University-Kingsville (TAMUK); Nuri Yilmazer, Texas A&M University, Kingsville; Eusebio Cuellar Torres, Texas A&M University-Kingsville; Tamara Denise Guillen, Texas A&M University-Kingsville
Tagged Divisions
K-12 & Pre-College Engineering
, computer architecture, electric drives, and power electronics. He also conducts research on engineering education concepts and STEM outreach camps. Dr. Yilmaz is a member of the Eta Kappa Nu Electrical Engineering Honor Society, IEEE and ASEE.Prof. Nuri Yilmazer, Texas A&M University, Kingsville Nuri Yilmazer received the B.S. in electrical and electronics engineering from Cukurova University at Adana, Turkey in 1996, and M.S. and Ph.D. degrees in electrical and computer engineering from Uni- versity of Florida and Syracuse University in 2000 and 2006, respectively. He worked as a post-doctoral research associate in the Computational Electromagnetics Laboratory at Syracuse University from 2006 to 2007. He is
Conference Session
It's Elementary
Collection
2013 ASEE Annual Conference & Exposition
Authors
Eduardo Alfonso Suescun-Florez, Polytechnic Institute of New York University; Ryan Francis Cain, PS 3 The Bedford Village School; Vikram Kapila, Polytechnic Institute of New York University; Magued G. Iskander P.E., Polytechnic Institute of New York University
Tagged Divisions
K-12 & Pre-College Engineering
, Polytechnic Institute of New York University Dr. Vikram Kapila is a professor of Mechanical Engineering at NYU-Poly, where he directs an NSF funded Web-Enabled Mechatronics and Process Control Remote Laboratory, an NSF funded Research Experience for Teachers Site in Mechatronics, and an NSF funded GK-12 Fellows project. He has held visiting positions with the Air Force Research Laboratories in Dayton, OH. His research interests are in K-12 STEM education, mechatronics, robotics, and linear/nonlinear control for diverse engineering applications. Under Research Experience for Teachers Site and GK-12 Fellows programs, funded by NSF, and the Central Brooklyn STEM Initiative (CBSI), funded by six philanthropic foundations, he
Conference Session
Thinking Outside the Box! Innovative Curriculum Exchange for K12 Engineering
Collection
2011 ASEE Annual Conference & Exposition
Authors
Lelli Van Den Einde, University of California, San Diego; Samuel Lee, University of California, San Diego
Tagged Divisions
K-12 & Pre-College Engineering
” cluster within the contexts of experiential and problem-based learning theories, andwill document the curriculum used such that its successes may be improved and replicated.2. Overview of High School Summer ProgramCOSMOS is a residential math and science summer camp that provides an opportunity formotivated high school students to work alongside university researchers and faculty to exploretopics that extend beyond the typical high school curriculum. The program encompasses fouruniversity campuses, each offering a variety of clusters in science and engineering thatconcentrate on hands-on activities in laboratory settings highlighting current universityresearch[1]. The objective of the “Earthquakes in Action” cluster described herein is to
Conference Session
Engineering Collaboration: Faculty & Student in K-12 Programs
Collection
2010 Annual Conference & Exposition
Authors
Vikram Kapila, Polytechnic University; Magued Iskander, Polytechnic University; Noel Kriftcher, Polytechnic University
Tagged Divisions
K-12 & Pre-College Engineering
AC 2010-581: INTEGRATING GRADUATE STUDENT RESEARCH INTO K-12CLASSROOMS: A GK-12 FELLOWS PROJECTVikram Kapila, Polytechnic University VIKRAM KAPILA is an Associate Professor of Mechanical Engineering at Polytechnic Institute of NYU, Brooklyn, NY, where he directs an NSF funded Web-Enabled Mechatronics and Process Control Remote Laboratory, an NSF funded Research Experience for Teachers Site in Mechatronics, and an NSF funded GK-12 Fellows project. He has held visiting positions with the Air Force Research Laboratories in Dayton, OH. His research interests are in cooperative control; distributed spacecraft formation control; linear/nonlinear control with applications to robust control
Conference Session
K-12 Robotics
Collection
2013 ASEE Annual Conference & Exposition
Authors
Arif Sirinterlikci, Robert Morris University; Selin Frances Sirinterlikci, Carnegie Mellon University
Tagged Divisions
K-12 & Pre-College Engineering
Paper ID #6213Development of a Summer High School Research ProgramDr. Arif Sirinterlikci, Robert Morris University Arif Sirinterlikci is a professor of engineering at Robert Morris University. Besides advising Co-Op, Industrial, and Manufacturing Engineering students, he also serves as the Interim Head of the Engineering Department and Director of Engineering Laboratories. Sirinterlikci has been active in ASEE with K- 12/Pre-college, Manufacturing, Mechanical Engineering, and Engineering Technology Divisions.Miss Selin Frances Sirinterlikci Selin Sirinterlikci is a graduating senior from Moon Area High School in Moon
Conference Session
Curriculum Exchange II
Collection
2012 ASEE Annual Conference & Exposition
Authors
Dani Sledz, Colorado School of Mines; Allison M. Silvaggio, STEM Magnet Lab School
Tagged Divisions
K-12 & Pre-College Engineering
focus in mathematics and science. Silvaggio partners with the National Renewable Energy Laboratory and Colorado School of Mines during the summer creating and teaching ”The Science of Energy” for Colorado Educators. Page 25.603.1 c American Society for Engineering Education, 2012 Exchange: Mouse Wheel Generator Through the Bechtel K-5 Educational Excellence Initiative, the Colorado School of Mines isworking with kindergarten through fifth grade (K-5) teachers to increase their competence andconfidence in mathematical and scientific content, in the use of