Asee peer logo
Displaying results 91 - 120 of 130 in total
Conference Session
K-12 and Pre-College Engineering Division Poster Session
Collection
2014 ASEE Annual Conference & Exposition
Authors
Kristen B. Wendell, University of Massachusetts, Boston
Tagged Divisions
K-12 & Pre-College Engineering
Education, 10,(2), 123-140.Sherin, M. G & van Es., E. A. (2009). Effects of video club participation on teachers' professional vision. Journal of Teacher Education, 60(1), 20-37Weilan, I., Rogers, M. P., Akerson, V., & Pongsanon, K. (2010). Proposing a video-based measure of preservice teachers' abilities to predict elementary students' scientific reasoning. Paper presented at the annual conference of the Association for Science Teacher Education.Yoon, S. Y., Evans, M. G., & Strobel, J. (2012). Development of the teaching engineering self-efficacy scale (TESS) for K-12 teachers. In Proceedings of the 119th American Society for Engineering Education Annual Conference and Exposition, San Antonio, TX
Conference Session
Gender and Accessibility Issues in K-12 Engineering Education
Collection
2007 Annual Conference & Exposition
Authors
Linda Hirsch, New Jersey Institute of Technology; John Carpinelli, New Jersey Institute of Technology; Howard Kimmel, New Jersey Institute of Technology; Ronald Rockland, New Jersey Institute of Technology; Joel Bloom, New Jersey Institute of Technology
Tagged Divisions
K-12 & Pre-College Engineering
-genderprograms like FEMME can be particularly effect in reaching young girls and changing theirattitudes. Initial evaluations of the FEMME program have been positive but they have beenprimarily formative in nature. The Middle School Students’ Attitude to Engineering, Scienceand Mathematics Survey has been developed to measure middle school students’ overallattitudes to engineering, mathematics and science; their knowledge about engineering careers;their self-efficacy in relation to engineering and technology-related skills and who is talking tothem about careers in engineering. All students who attended one of the 2006 summer programsat the Center for Pre-College Programs were asked to complete the survey at the beginning andagain at the end of their
Conference Session
Research Initiatives
Collection
2013 ASEE Annual Conference & Exposition
Authors
Eric N. Wiebe, North Carolina State University; Malinda Faber, The Friday Institute for Educational Innovation; Jeni Corn, Friday Institute for Educational Innovation, NC State University; Tracey Louise Collins, North Carolina State University; Alana Unfried, North Carolina State University; LaTricia Townsend
Tagged Divisions
K-12 & Pre-College Engineering
’ levels ofconfidence were mixed. Female and male students differed by less than one percentage point;Asian students had the highest expectations (94.1% responded “OK/Pretty Well or Very Well”),with Hispanic/Latino students slightly lower (91.6%), and Black/African American studentsslightly lower still (90.8%). By school-level, students varied slightly: elementary students hadthe most confidence (92.9% responded “OK/Pretty Well or Very Well”) and high school studentshad the least confidence (88.1%). Overall, though, these demographic differences were relativelysmall with regards to self-efficacy in these core STEM areas.Table 2. Upper Elementary and Middle and High School Student Demographic Characteristics
Conference Session
Mentoring & Outreach for Girls & Minorities
Collection
2010 Annual Conference & Exposition
Authors
Lindsey Jenkins-Stark, Iridescent; Tara Chklovski, Iridescent
Tagged Divisions
K-12 & Pre-College Engineering
Area and Salinas and shown to improve participants’ interest in science,content knowledge and self-efficacy. The Family Science Courses are designed and taught byengineering undergraduate and graduate students to families at schools in the evenings. EachFamily Science Course consists of five evening sessions of two hours each. Families are invited(including younger siblings). Formative assessments such as Exit Slips (three questions checkingfor content understanding) are conducted at the end of every session. Pre and post tests areconducted in each Family Science Course. Food is provided at every session. Instruction istranslated into Spanish if the majority of families are Hispanic and non-English speaking. Topicsillustrate the real-world
Conference Session
Certifying Teachers in Engineering or Integrated STEM
Collection
2011 ASEE Annual Conference & Exposition
Authors
Stephen O'Brien, College of New Jersey
Tagged Divisions
K-12 & Pre-College Engineering
preparation programs at our institution. We believe thelevel of mathematical content is high compared to similar programs elsewhere. We are of theopinion that the multidisciplinary nature of our programs (all four elements of STEM) arebeneficial. Preliminary course surveys and measurements of math anxiety and teaching self-efficacy indicate that the integrated STEM teacher candidates do experience substantialimprovements over the course of their curriculum.IntroductionOur institution supports two Science, Technology, Engineering and Mathematics (STEM)teacher preparation programs. One program, referred to as the Math/Science/Technology(MST) program, is an elementary [preK-5] program and was started in 1998. The secondprogram is a secondary 6-12
Conference Session
Standards and K-12 Engineering
Collection
2012 ASEE Annual Conference & Exposition
Authors
Jing Wang, Purdue University; Melissa Dyehouse, Purdue University; Nicole R. Weber, Lesley University; Johannes Strobel, Purdue University, West Lafayette
Tagged Divisions
K-12 & Pre-College Engineering
. Page 25.340.2Research on STEM education and underrepresented minorities and women may serve as anexample for the significance and impact of authentic learning experiences and the need for morereflection: Data show that STEM fields are not as attractive to underrepresented minorities andgirls. While reasons differ, girls are turning away from science/math as early as third and fourthgrade and for the ones persisting, the current climate provided by STEM curricula produces ahigh level of anxiety and low self-efficacy.4,5 Similarly, engineering is considered more object-oriented than people-oriented.6 As a result, many students who are interested in careers related tohelping people may not pursue an engineering-related field, but instead go into
Conference Session
Fundamental: Metrics & Assessment for K-12 Engineering Education
Collection
2015 ASEE Annual Conference & Exposition
Authors
Cathy P. Lachapelle, Museum of Science; Yoonkyung Oh, Pennsylvania State University; Muhammad Faiz Shams, Museum of Science; Jonathan D Hertel, EiE/Museum of Science; Christine M Cunningham, Museum of Science
Tagged Topics
Diversity
Tagged Divisions
K-12 & Pre-College Engineering
realistic Page 26.848.2problems. Engaging in PBL is challenging for both teachers and students, but when compared totraditional learning methods, has been shown to lead to improved attitudes, self-efficacy, andlearning gains on both traditional subject matter and problem-solving skills11. Underrepresentedminorities specifically have also been found to benefit in these ways from PBL curricula andtraining for their teachers12.Efficacy StudyThe intent of an efficacy study is to test whether an educational innovation, implemented underideal conditions, has a causal effect on student outcomes13. Resources should be ample andfidelity carefully monitored
Conference Session
Gender and Minority Issues in K-12 Engineering
Collection
2010 Annual Conference & Exposition
Authors
Laura Winn, Virginia Military Institute; Gary Winn, West Virginia University; Robin Hensel, West Virginia University; Reagan Curtis, West Virginia University
Tagged Divisions
K-12 & Pre-College Engineering
Academies Press.Washington, DC. 346 pages.3. McLaughlin, D.K., Lichter, D.T. and Matthews, S.A. (1999). "Demographic Diversity and Economic Change inAppalachia". Population Research Institute, Pennsylvania State University. p. 18.4. ibid., p. 123.5. ibid., p. 1266. ibid., p. 147. ibid., p. 468. ibid., p. 329. ibid., p. 16010. ibid., p. 21011. ibid., p. 21512. ibid, p. 22213. American Association of University Women (AAUW). (1998). "Gender gaps: Where schools still failour children." Washington, DC: AAUW Educational Foundation.14. Lupart, J. L., & Odishaw, J. (2003). "Canadian Children and Youth At-Risk." Exceptionality EducationCanada, 2 & 3(13), 9-28.15. Post-Kammer, P., & Smith, P. L. (1985). "Sex differences in Career Self-Efficacy
Conference Session
K-12 Professional Development II
Collection
2013 ASEE Annual Conference & Exposition
Authors
Ronald H Rockland, New Jersey Institute of Technology; Levelle Burr-Alexander, New Jersey Institute of Technology; Howard S. Kimmel, New Jersey Institute of Technology; John D. Carpinelli, New Jersey Institute of Technology; Linda S Hirsch, New Jersey Institute of Technology; Thomas Michael Tylutki, New Jersey Institute of Technology
Tagged Divisions
K-12 & Pre-College Engineering
teachers had fewerconcerns and were beginning to think about how they could collaborate with other teachers.Teachers’ attitudes toward engineering, their knowledge of careers in engineering, and theinformation they had to help students interested in studying engineering increased as a result ofparticipating in the Medibotics program. Students’ attitudes toward engineering, theirknowledge of careers in engineering, and their self-efficacy for engineering type skills increased Page 23.787.3significantly.As information about the Medibotics program was disseminated through conferencepresentations, journal articles, book chapter11-15 and teacher learning
Conference Session
Linking K-12 to Post-secondary
Collection
2012 ASEE Annual Conference & Exposition
Authors
Alok K. Verma P.E., Old Dominion University
Tagged Divisions
K-12 & Pre-College Engineering
&4), 1998, 271-311. 3. Newsletter, Teacher Quality and Improvement, The Council of Chief State Offices, 2005, vol. 10 issue 3. 4. T. Boe, The next step for educators and the technology industry: Investing in teachers. Educational Technology, 1989,29(3), 39-44. 5. Bureau of Labor Statistics http://www.bls.gov/oco/ocos027.htm 6. C. Czerniak, .& M. Schriver, An examination of preservice science teachers' beliefs and behaviors as related to self-efficacy. Journal of Science Teacher Education, 1994, Volume 5, Number 3, 77-86. 7. N. Fisher, K. Gerdes., T. Logue, L. Smith & I Zimmerman, Improving students' knowledge and attitudes of science through use of hands-on activities. (ERIC Document
Conference Session
Women in K-12 Engineering
Collection
2009 Annual Conference & Exposition
Authors
Michelle Porche, Wellesley Centers for Women; Corinne McKamey, Wellesley Centers for Women; Peter Wong, Museum of Science
Tagged Divisions
K-12 & Pre-College Engineering
student aspirations.In this paper, we present results from Year 2 of a three-year longitudinal study takingplace in five high schools within a large urban school district in the Northeast. A total of934 boys and girls participated in the second year of data collection. Prior resultssuggested that engineering interests and aspirations were related to school characteristics,science and math self-efficacy, and experience with extracurricular activities.15 Giventhese findings, we subsequently asked specifically about student knowledge ofengineering and experiences of engineering recruitment, in order to investigate thosedirect effects on college engineering aspirations. Survey data is used to examine highschool students’ knowledge of engineering
Conference Session
K-12 and Pre-college Engineering: Educational Policy and Research
Collection
2014 ASEE Annual Conference & Exposition
Authors
Mitchell Nathan, University of Wisconsin-Madison; Greg Pearson, National Academy of Engineering
Tagged Divisions
K-12 & Pre-College Engineering
networking technologies have the potential to expandthe range of outcomes (e.g., progressions of integrated STEM learning) that can be measured.The expertise of educators working in classrooms and in after-/out-of-school settings is a keyfactor—some would say the key factor—in determining whether integrated STEM education canbe done in ways that produce positive outcomes for students. One limiting factor to teachereffectiveness and self-efficacy is teachers’ content knowledge in the subjects being taught. Forexample, most K-12 science and mathematics teachers have taken fewer courses in the subjectarea(s) in which they were prepared than recommended by their respective teacher professionalassociations and many have taken few courses in other areas
Conference Session
Addressing the NGSS, Part 2 of 3: Supporting K-12 Science Teachers in Engineering Pedagogy and Engineering-Science Connections, Part 2 of 3
Collection
2014 ASEE Annual Conference & Exposition
Authors
Louis Nadelson, Boise State University; Anne Louise Seifert, Idaho National Laboratory; Meagan McKinney, Boise State University
Tagged Divisions
K-12 & Pre-College Engineering
the College of Education at Boise State University. She is pursuing a Master’s of Science in STEM Education. In the future she plans on incorporating her knowledge and experience with STEM education into her own classroom. Her research interests include elementary science education, self-efficacy, and teacher professional development. Page 24.983.1 c American Society for Engineering Education, 2014 Place-based STEM: Leveraging Local Resources to Engage K-12 Teachers in Teaching Integrated STEM and for Addressing the Local STEM PipelineAbstractBusiness, industry, parks
Conference Session
Assessment of K-12 Engineering Programs and Issues
Collection
2009 Annual Conference & Exposition
Authors
Debra Brockway, Stevens Institute of Technology; Elisabeth McGrath, Stevens Institute of Technology; Mercedes McKay, Stevens Institute of Technology; Dawna Schultz, Stevens Institute of Technology
Tagged Divisions
K-12 & Pre-College Engineering
14.212.5Increasing teacher knowledge of engineering concepts and pedagogy are central to the program’sprimary goal of exposing all students to engineering in their K-12 classrooms, but it is merely thebeginning. The PD activities are intended to provide teachers with increased self-efficacy in thisarea so that they will feel confident introducing engineering concepts and activities in theirclassrooms. As indicated in Table 3, almost three-quarters of the teachers responding to thesurvey stated that they had increased the implementation of the engineering design process afterhaving participated in the EOFNJ program. Table 3: Teacher responses when asked about their use of the listed instructional strategies after having participated in the EOFNJ
Conference Session
K-12 Professional Development II
Collection
2013 ASEE Annual Conference & Exposition
Authors
So Yoon Yoon, INSPIRE, Purdue University, West Lafayette; Yi Kong, Purdue University, West Lafayette; Heidi A. Diefes-Dux, Purdue University, West Lafayette; Johannes Strobel, Purdue University, West Lafayette
Tagged Divisions
K-12 & Pre-College Engineering
and contexts of TPD by analyzing teachers’ responses to theschools and staffing survey (SASS). Garet et al. (2001)7 identified the features that influencedthe effectiveness of TPD based on teachers’ responses from a teacher activity survey. Lowden(2005)14 evaluated TPD and its impact on teacher change by applying a designed survey.Posnanski (2002)15 analyzed the TPD model that was developed by Haney, Czerniak, and Lumpe(1996)16 and elementary science teachers’ self-efficacy beliefs based on the data collected froman evaluation form and a survey that included open-ended questions.C. Previous Studies about Teachers’ Evaluations of Engineering TPDFor TPD in engineering, only a few studies have investigated the evaluations of TPD fromteachers
Conference Session
Extending a Hand Back: Older Students Inspiring Younger Students
Collection
2011 ASEE Annual Conference & Exposition
Authors
Noah Salzman, Purdue University; Johannes Strobel, Purdue University, West Lafayette
Tagged Divisions
K-12 & Pre-College Engineering
Virginia Tech 24-26 workboth directly with FIRST robotics teams as mentors and develop technologies to help teachrobotics concepts to high school FIRST participants. Students from multiple high schools Page 22.1082.5participate in an evening class for elective credit taught by high school teachers and assisted byVirginia Tech students. The program is coordinated by faculty members from MechanicalEngineering and Education. Although not explicitly studied, Kasarda et al. 26 suggest that thisprogram facilitates the development of self-efficacy through mastery experiences in the contextof the mentoring program.Students from Michigan Tech also work with
Conference Session
Research to Practice: STRAND 3 – Principles of K-12 Engineering Education and Practice
Collection
2015 ASEE Annual Conference & Exposition
Authors
Jonathan R Zubarriain, Vaughn College of Aeronautics and Technology; Nicholas Kumia, Vaughn College of Aeronautics and Technology; Shouling He, Vaughn College of Aeronautics & Technology
Tagged Topics
Diversity
Tagged Divisions
K-12 & Pre-College Engineering
implementation. In addition, exposingstudents to more challenging concepts, more productive brainstorming process and developingcooperative learning skills are also under investigation.Bibliography1. T. D. Fantz, T. J. Siller and M. A. DeMiranda, “Pre-collegiate factors influencing the self-efficacy of engineering students,” J. of Engineering Education, July 2011, vol. 100. No. 3, pp. 604-623.2. N. S. Salzman, G. D. Ricco, and M. W. Ohland, (2014), “Pre-college engineering participation among first-year engineering students”,Proc. of the 2014 American Society for Engineering Education Annual Conference, Indianapolis, IN, June 15-18.3. I. Jormanainen, Supporting Teachers Unpredictable Robotics Learning Environment, Dissertation in Forestry and
Conference Session
Research & Evaluation on K-12 Teachers and Teaching.
Collection
2015 ASEE Annual Conference & Exposition
Authors
Sarah Marie Coppola, Tufts Center for Engineering Education and Outreach; Leonardo Andres Madariaga, Tufts University Center for Engineering Education and Outreach / Federico Santa Maria Technical University; Marya H. Schnedeker, Center for Engineering Education and Outreach, Tufts University
Tagged Divisions
K-12 & Pre-College Engineering
Education, 369-387.9) Molitor, S.C., Kaderavek, J.N., Dao, H., Liber, N.J., Rotshtein, R., Milewski, G., & Czerniak, C.M. (2014). Engineering Teaching Behaviors in PK-3 classrooms. Proceedings of the ASEE Annual Conference and Exposition, June 2014, Indianapolis, IN.10) Yoon Yoon, S., Evans, M.G., & Strobel, J. (2012). Development of the Teaching Engineering Self-Efficacy Scale (TESS) For K-12 Teachers. Proceedings of the ASEE Annual Conference and Exposition, June 2012, San Antonio, TX.11) Wang, H.-H., Moore, T. J., Roehrig, G. H., & Park, M. S. (2011). STEM integration: The impact of professional development on teacher perception and practice. Journal of Pre-College Engineering Education Research, 1(2), 1-13.12
Conference Session
Best Papers in K-12 / Pre-college Division
Collection
2015 ASEE Annual Conference & Exposition
Authors
Pamela S. Lottero-Perdue, Towson University; Elizabeth Anne Parry, North Carolina State University
Tagged Divisions
K-12 & Pre-College Engineering
in the PreK-12 setting was acceleratedwith the release of A Framework for K-12 Science Education: Practices, Crosscutting Conceptand Core Ideas and the subsequent standards document, The Next Generation ScienceStandards.1,7,8 Engineering is still, however, a recent and complex challenge for teachers, Page 26.592.3particularly those at the elementary level, who often lack self confidence and self efficacy withregard to teaching engineering.1,2 Teachers’ self confidence in a subject is linked to both howthey perceive it and their knowledge of the subject itself.19 Elementary teachers receive little tono training in engineering in either pre
Conference Session
Thinking, Reasoning & Engineering in Elementary School
Collection
2010 Annual Conference & Exposition
Authors
Gerald Mora, New Mexico Tech; Ricardo Negron, WPAFB; Robert McGahern, DDR&E; Eugene Brown, Virginia Tech
Tagged Divisions
K-12 & Pre-College Engineering
content and processes knowledge, enhance teacherattitudes and dispositions toward best teaching practices, enhance teacher self-efficacy throughattitudes of preparation in content and teaching skills, and to introduce the research-basedcurriculum.Changes in Teacher Content Knowledge—Teacher content knowledge changes were measuredwith pre/post content tests prior to and after the summer institute component of the professionaldevelopment. The tests were a mixture of multiple choice, extended answers, and in some cases Page 15.909.4performance assessments.Table 1 indicates that, overall, the 196 teachers who participated in the summer
Conference Session
Evaluation: Exploring High School Engineering Education Initiatives
Collection
2015 ASEE Annual Conference & Exposition
Authors
Roxanne Moore, Georgia Institute of Technology; Meltem Alemdar, Georgia Institute of Technology; Sunni H. Newton, CEISMC; Jeffrey H Rosen, Georgia Institute of Technology; Marion Usselman, Georgia Institute of Technology; Stefanie A Wind, Georgia Institute of Technology
Tagged Topics
Diversity
Tagged Divisions
K-12 & Pre-College Engineering
modified from severalvalidated instruments related to the 21st Century Skills listed above 33, 34. In addition to 21stCentury Skills, student engagement and self- efficacy were also measured. This instrument,developed by researchers at Georgia Tech for this project, included forty-five items on a 5-pointLikert-type rating scale (e.g., ranging from “Strongly Agree” to Strongly Disagree”), with aCronbach’s α of 0.91, and internal consistency for each of the five scales ranging from 0.84 to0.95. Engineering design portfolio assessment. In addition to affective data, studentachievement data were collected using an engineering design portfolio assessment (EDPA). Foreach project, students used a digital log to document their progress through the
Conference Session
High School Engineering Education
Collection
2010 Annual Conference & Exposition
Authors
Amy Prevost, University of Wisconsin, Madison; Mitchell Nathan, University of Wisconsin, Madison; Benjamin Stein, University of Wisconsin; Allen Phelps, University of Wisconsin, Madison
Tagged Divisions
K-12 & Pre-College Engineering
learn what they are taught and what they spend time doing rather than what isintended2. For example, content of the enacted curriculum is a reliable predictor ofstudent achievement gains3,4. Measures of the enacted curriculum can also be used toinvestigate the quality of instruction and curriculum implementation5. In this case westudy the enacted curriculum to try to understand where explicit integration occurs, whichin turn addresses some of the necessary pre-conditions that allow students to transferknowledge to new tasks and to situations beyond the classroom. The enacted curriculumis interesting to study using video analysis because we can review what was actuallytaught to the students and compare it to the intended curriculum. (Teacher
Conference Session
Enhancing K-12 STEM Education with Engineering
Collection
2010 Annual Conference & Exposition
Authors
Taylor Martin, University of Texas, Austin; Tom Benton, University of Texas, Austin; William McKenna, University of Texas, Austin; Pat Ko, University of Texas at Austin
Tagged Divisions
K-12 & Pre-College Engineering
andincluded some that we wrote. It uses a 5-point Likert scale to measure agreement with avariety of statements, falling into several broad categories: • Societal role engineering (ex: I see engineering as addressing human needs.”) • Technical characterization of engineering (ex: “I see engineering as a career that uses lots of math.”) • Self-efficacy (ex: “I am good at technology,” or “I enjoy science.”) • Engineering education (ex: “Creative students should become engineers.”)Overall, the participants see engineering as a highly technical field offering great benefitsto humanity. They rated themselves as being proficient in pertinent technical areas, valuebalance within teams, and see teamwork as being commonplace in and
Conference Session
Research and Models for Professional Development
Collection
2011 ASEE Annual Conference & Exposition
Authors
Cher C. Hendricks, Georgia Institute of Technology; Barbara Burks Fasse, Georgia Institute of Technology; Donna C. Llewellyn, Georgia Institute of Technology
Tagged Divisions
K-12 & Pre-College Engineering
Conference Session
K-12 and Pre-college Engineering Curriculum and Programming Resources, Part 1 of 2
Collection
2014 ASEE Annual Conference & Exposition
Authors
Cynthia Marie Baker, University of Nebraska, Lincoln - Mid American Transportation Center; Laurence R Rilett P.E., University of Nebraska, Lincoln; Gina M. Kunz; Gwen C. Nugent
Tagged Divisions
K-12 & Pre-College Engineering
facilitate student learning and involvement. Rather than actingas the primary source of information, teachers provide access to information, so to foster self-efficacy and a sense of fascination as students strive to develop their own knowledge and skill-sets related to club topics. Moreover, teachers assist in determining a curriculum based onstudent interest, so to foster intrinsic motivation and stimulate the passion to learn. Adopting therole of the student, teachers gain new knowledge alongside their students, actively participating Page 24.1057.9in activities and lessons while encouraging students to put forth their own best efforts.Community
Conference Session
Professional Development Programs for Teachers
Collection
2006 Annual Conference & Exposition
Authors
Anant Kukreti, University of Cincinnati; Patricia McNerney, University of Cincinnati; Suzanne Soled, University of Cincinnati; Kelly Obarski, University of Cincinnati; Mingming Lu, University of Cincinnati; Richard Miller, University of Cincinnati; Daniel Oerther, University of Cincinnati; Heng Wei, University of Cincinnati; Thaddeus Fowler, University of Cincinnati
Tagged Divisions
K-12 & Pre-College Engineering
patterns. Using the facilities Page 11.183.5available at the Advanced Transportation Engineering Systems Laboratory, the teacher was thentrained on the use of VISSIM traffic simulation software, and conducted simulation studies forthe previously selected sites to evaluate their operational performance under the existing andfuture traffic conditions. The teacher identified existing and potential traffic problems byanalyzing the results obtained from both the HCM-based and VISSIM simulators, in terms of“measure of effectiveness” estimation, and recommend possible improvements for HCM models. A field trip connected with each research project
Conference Session
Principles of K-12 Engineering Education and Practice
Collection
2014 ASEE Annual Conference & Exposition
Authors
Yosef S. Allam, Embry-Riddle Aeronautical University, Daytona Beach; Alexander Danial Manasseh, Prometheus Education, Inc; Asher Michael Smith; William Miceli, Embry-Riddle Aeronautical Univ., Daytona Beach; Shiv D Panjwani; Cierra Sparks; Joseph Anthony Alequin; Joshua Lee Dankson, Embry Riddle Aeronautical University; Cody David Clarke; Nicholas James Maskiell; Nathalie Vazquez, Embry-Riddle Aeronautical University; Marco Alan Schoener, SENAET
Tagged Divisions
K-12 & Pre-College Engineering
numerous documented projectsand studies, where impacts on student literacy, awareness, interest, self-efficacy and attitudestowards STEM disciplines are shown. The range of project contexts is understandably broad,however many projects employing contexts related to electronics, microcontrollers, and roboticscan be found with encouraging results. Many of these instructional interventions are problem-and/or project-based, hands-on, active, and can allow K-12 students to relate to experiences andcontexts with which they are familiar. Embry-Riddle student-teachers on this project reviewedthe articles below to gain insight on successful and impactful K-12 STEM outreach programsand to determine prescriptions to apply to their own project.Student
Conference Session
Middle School Programs
Collection
2012 ASEE Annual Conference & Exposition
Authors
Richard H. Crawford, University of Texas, Austin; Christina Kay White, University of Texas, Austin; Chandra L. Muller, University of Texas, Austin; Anthony J. Petrosino Jr., University of Texas, Austin ; Austin B. Talley P.E., University of Texas, Austin ; Kristin L. Wood, University of Texas, Austin
Tagged Divisions
K-12 & Pre-College Engineering
toaddressing. The Beyond Blackboards model is based on a comprehensive community approachthat integrates informal, out-of-school, design-based learning experiences to inspire diversemiddle school students to advance in STEM courses and fields. We find that our three-prongedapproach fosters a strong community culture of understanding and supporting engineering Page 25.647.10education. From afterschool Innovation Clubs to hosting an FLL competition to family ‘EngineerIt’ nights to underwater summer camp on campus, our program impacted and improved STEMinterest and self-efficacy not only for participating students, but also for students across all of
Conference Session
Gender Perceptions and Girls in K-12 Engineering and Computer Science
Collection
2014 ASEE Annual Conference & Exposition
Authors
Shreya Kumar, Michigan Technological University; Linda M. Ott, Michigan Technological University
Tagged Divisions
K-12 & Pre-College Engineering
, in Computers & Education 54, 1145-1156.7 Terlecki, M., Brown, J., Harner-Steciw, L., Irvin-Hannum, J., Marchetto-Ryan, N., Ruhl, L., Wiggins, J., 2011, Sex differences and similarities in video game experience, preferences, and self-efficacy: Implications for the gaming industry, in Current Psychology 30, 22-33.8 Burge, J. E., Gannod, G. C., Doyle, M., Davis, K. C., 2013, Girls on the go: a CS summer camp to attract and inspire female high school students, Proceeding of the 44th ACM technical symposium on Computer science education, ACM, pp. 615-620.9 Sewell, K. L., Ringenberg, J., 2012, Accelerating K-12 Interest in Computer Science using Mobile Application-Based Curriculums, American Society for Engineering
Conference Session
Focus on Elementary
Collection
2012 ASEE Annual Conference & Exposition
Authors
Elizabeth A. Parry, North Carolina State University; Emily George Hardee, Brentwood Magnet Elementary School of Engineering; Lizette D. Day, Rachel Freeman School of Engineering
Tagged Divisions
K-12 & Pre-College Engineering
Health, Ms. Parry and colleagues from theCollege of Engineering and the College of Education have been conducting research on theefficacy of implementing engineering in elementary schools. Pre and post tests on teacher andstudent attitudes toward STEM and student competency and self-efficacy in engineering designand science were administered and an analysis of student STEM notebooks was done. Results ofthat work have been or are in process of being disseminated (Ernst, et al); pilot and field test dataindicate statistically significant gains in both science content knowledge (field test) andengineering design content knowledge (pilot test) as well as in student STEM self-efficacy.STEM notebooks are used by teachers for formative assessment. At