Anne College (later Universityof Maryland Eastern Shore). As with most of the segregation schemes of the era, Princess Annewas poorly funded, never fully staffed with qualified personnel, and never had proper investmentin infrastructure. Parallel to the public education enterprise, the inequality of the system waspropagated by racist and intransigent stakeholders and justified through various legal loopholesand racist cultural assumptions.One particular aspect of inequality between the two systems was access to professional trainingin specific career paths. In the 1930s, this was brought to the fore by a legal challenge to theUMD law school in Baltimore. The result of this legal challenge was a new separate-but-(more)-equal law school at
Alabama. Dr. Burian’s professional career spans more than 20 years during which he has worked as a de- sign engineer, as a Visiting Professor at Los Alamos National Laboratory, as a Professor at the University of Arkansas and the University of Utah, and as the Chief Water Consultant of an international engineer- ing and sustainability consulting firm he co-founded. He served as the first co-Director of Sustainability Curriculum Development at the University of Utah where he created pan-campus degree programs and stimulated infusion of sustainability principles and practices in teaching and learning activities across campus. Dr. Burian currently is the Project Director of the USAID-funded U.S.-Pakistan Center for
students to learn more about STEM and possibly choose it as afuture career. While these hopes were future-oriented, they were also intentionally part of thelessons and activities. Jill explained her hope that students will take on STEM identities whileengaged in classroom work, I would love for them to start to be little engineers where they are keeping their own little engineering notebook and saying okay this is how I’m going to make a table, this is what the table is going to look like and then make the graph afterwards.By putting students in the position of STEM professionals in the classroom, Bob had similarhopes, “And so, hopefully, and maybe no one will from there, but I hope some of the kidsthere…maybe they will want to
the genderdemographic).Situating the researchersVanasupa: I am a white-looking female engineering professor who identifies as male. My whitetransgender state has come with unearned benefits and disadvantages during my engineeringeducation journey. While often the only female in my courses of white males, I honestly did notquestion whether I belonged since I felt like “one of the guys.” Over the course of my career, Iinternalized the cultural narrative that I was “less than” my male peers. I often encounter themasculine norms above in the culture of engineering education – in what is valued (or notvalued); in the language, habits, and ways of interacting that are accepted as “normal,” in theworkplace behaviors that are deemed “unprofessional
studentengagement and creativity. The ideas students came up with were often trivial andunimaginative; they were frequently oriented toward individual use and addressed problems ofno greater significance than that of minor inconvenience. For example, each semester wouldyield various designs for collapsible backpack umbrellas, automated erasers for dry-erase boards,and novel charging methods for personal electronic devices. Equally problematic was thatstudents struggled to see the value of the patent application assignment to engineering practice.On course evaluations they frequently voiced that it was difficult to appreciate the project’srelevance to a career in engineering especially as they were unlikely to become inventors orpatent attorneys. Further
is, paraphrasing myself from above, is to attend to the configuration of the curricula,its particular pedagogical strategies, how they cultivate students’ identity, the nature of theirprograms’ educational cultures, student-teacher relationships, deliberate recruit, career advising,etc. By attending to the entire educational system, and not focusing on discrete “creativity”knowledge chunks, engineering educators are more likely to reliably arrive at robust educationaloutcomes of enhanced student creativity, but then those changes will come at a cost toeducational outcomes currently achieved. Engineering educators may wish to assume there is nofriction between engineering and design educational logics, and hence to define their
faculty member at Oklahoma State University working on terahertz frequencies and engineering educa- tion. While at Oklahoma State, he developed courses in photonics and engineering design. After serving for two and a half years as a program director in engineering education at the National Science Founda- tion, he took a chair position in electrical engineering at Bucknell University. He is currently interested in engineering design education, engineering education policy, and the philosophy of engineering education.Dr. Jennifer Karlin, Minnesota State University, Mankato Jennifer Karlin spent the first half of her career at the South Dakota School of Mines and Technology, where she was a professor of industrial
members of the “ADA Generation,” or the first children togrow up with legally mandated access to education. The oldest of these young people are now intheir late twenties and early thirties, still fairly early in their careers. Since they were often thefirst Deaf students in their engineering programs, their engineering educations have beenconducted, with very few exceptions, entirely in spoken English.The state of sign language usage in postsecondary engineering educationDeaf engineers and their sign language interpreters (hereafter, “interpreters” will refer to signlanguage interpreters in this paper) have been using sign language to communicate abouttechnical topics for many years. However, due to Deaf engineers largely being educated
reflective engineer will be something that will encompass my entire engineering career but I feel that I am much more aware now, and this class is a direct link to this positive lifestyle.” —Student 03One student at a time... 13 of 20Acknowledgements The pilot course described here was conducted with partial support from Texas TechUniversity under a Seed Grant for Interdisciplinary Research. The data analysis and paperwriting were conducted with partial support from the National Science Foundation under GrantNo. 1806889. Any opinions, findings, and conclusions or recommendations expressed in thismaterial are those of the author(s) and do not necessarily
DTRA Grant HDTRA1-11-1-0016, DTRACNIMS Contract HDTRA1-11-D-0016-0001, and NSF NetSE Grant CNS-1011769.References [1] W. K. LeBold, R. Delauretis, and K. D. Shell. The purdue interest questionnaire: An interest inventory to assist engineer students in planning their career. annual Frontiers in Education Conference, 1977. [2] John P. Bean. Dropouts and turnover: The synthesis and test of a causal model of student attrition. Research in higher education, 12(2):155–187, 1980. [3] James A. Beane and Richard P. Lipka. Self-concept, self-esteem, and the curriculum. Columbia University, Teachers College, 1986. [4] Malene Rode Larsen, Hanna Bjornoy Sommersel, and Michael Søgaard Larsen. Evidence on Dropout Phenomena at Universities
socialimplications in terms of diversity (an overly used, minimalist justification) or some form ofdissemination into K-12. Yet they rarely find a way to connect course content with socialproblems, particularly those related to SJ. For example, and existing REU Site grant titled “FluidMechanics with Analysis using Computations and Experiments” is aimed at mentoringundergraduate students in “the current need for basic and applied research in fluid mechanicsacross a range of engineering disciplines as well as the training of undergraduate students instate-of-the-art laboratory environments.” And in traditional fashion, the grant justifies meetingCriterion 2 “by enhancing and diversifying the pool of students considering a research career inengineering
engineering,complicating any analysis of diversification efforts. In the case of economic competitiveness, thegoal is simply production of the maximum number of STEM graduates. The strategy is puttingmore bodies into the beginning of the STEM education pipeline so more come out the other end.In the case of educational pluralism, the goal is more about economic (and career) opportunity“for all,” and inclusiveness and diversity as desirable social and educational foundations in theirown right. These two diversification logics often fold together in practice—and are oftenconflated by STEM education reform advocates—confusing the conceptual foundations formany STEM inclusiveness initiatives. Therefore, while policy support for broad-based STEMrecruitment
contradicts a careful study of four institutions constrained in terms of educationalinnovation by accreditation, not because the process itself was cumbersome, but because of thenorms and constraints imposed by ABET evaluators and the broader engineering culture. 33Because ABET relies strongly on “old-boy networks” – exclusive relationships of mutualsupport and influence – to select leadership from Program Evaluators on up, the decision-makingstructure has a pronounced problem of underrepresentation (even by engineering standards) ofwomen, people of color, and younger engineers. Have any ABET evaluators been educatedunder EC 2000? How many have a true appreciation for professional skills? How many havespent careers focused narrowly in technical
responsibilities to protect the public” (FG 4, student 3) “The impact of engineering on society and environment is extremely important…” (FG 4, student unknown) “To mitigate the consequences and to basically protect the public and act in a professional code of ethics and follow standards and laws and don’t take bribes… Accountability is huge.” (FG 3, student 1) “…it changed the way I view engineering as a whole… I have a new approach, like every course no matter how difficult it is I can actually tackle it if I really understand what I’m doing and I enjoy what I’m doing” (I 2) “I think you have to understand that maybe not a fresh green engineer but as you progress in your career that your decisions have
important problems at the interface between chemistry, physics, engi- neering, and biology preparing the trainees for careers in academe, national laboratories, and industry. In addition to research, she devotes significant time developing and implementing effective pedagogical approaches in her teaching of undergraduate courses to train engineers who are critical thinkers, problem solvers, and able to understand the societal contexts in which they are working to addressing the grand challenges of the 21st century. c American Society for Engineering Education, 2018 Peer Review and Reflection in Engineering Labs: Writing to Learn and Learning to WriteAbstractClear
focuses on communication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and is co-PI on numerous NSF grants exploring communication, design, and identity in engineering. Drawing on theories of situated learning and identity development, her work includes studies on the teaching and learning of communication, effective teaching practices in design education, the effects of differing design pedagogies on retention and motivation, the dynamics of cross-disciplinary collaboration in both academic and industry design
,” PBS Online News Hour, 24-Dec-1999.[2] Bay, Susan, “Review of I Is an Other,” Leg. Comm Rhetor., vol. 11, pp. 189–194, 2014.[3] Bowdle, Brian F.; Gentner, Dedre, “The Career of Metaphor,” Psychol. Rev., vol. 112, no. 1, pp. 193–216, 2005.[4] Nilsson, Tonya Lynn, “Why Am I Learning This? Using Everyday Examples in Engineering to Engage Female (And Male) Students in the Classroom,” presented at the American Society for Engineering Education, 2014.[5] Homolka, Robert; Stephens, Greg, “A Triple Play: Mathematics, Baseball, and Storytelling,” presented at the American Society for Engineering Education, 2010.[6] Magana, Alejandra; et al., “Scaffolding Student’s Conceptions Of Proportional Size And Scale Cognition With Analogies And
Basingstoke: Macmillan Publ, 1993.[6] M. R. Lea and B. V. Street, “Student writing in higher education: An academic literacies approach,” Stud. High. Educ., vol. 23, no. 2, pp. 157–172, Jan. 1998, doi: 10.1080/03075079812331380364.[7] N. Artemeva, “‘An engrained part of my career’: The formation of a knowledge worker in the dual space of engineering knowledge and rhetorical process,” in Writing in knowledge societies, D. Starke-Meyerring, A. Pare, N. Artemeva, M. Horne, and L. Yousoubova, Eds. Fort Collins, CO: WAC Clearinghouse, 2011, pp. 321–350.[8] D. A. Winsor, Writing like an engineer : a rhetorical education /. Mahwah, N.J. : Lawrence Erlbaum Associates, 1996.[9] C. Miller and J. Selzer, “Special topics of argument in
research and teaching awards at the departmental, college, and national levels for his focus on freshman instruction.Mr. Warren R Hull Sr. P.E., Louisiana State University Warren R. Hull, Sr. is the Manager of engineering communications at Louisiana State University. He earned a B.S. in mechanical engineering from Louisiana State University and an M.S. in environmental health from Harvard University. His engineering career spans more than 40 years. He is a licensed Professional Engineer who was previously an engineering consultant, and is also a retired U.S. Air Force officer.Dr. Dianne Raubenheimer, Meredith College
success in their professional careers. We focused on threeimportant skills in oral presentation: audience analysis, message coherence / focus, and messagedelivery. A team of five faculty--four from ECE and the CAC director--worked together todevelop a rubric to evaluate students oral presentation skills in the sophomore design (ECGR2252), junior design (ECGR 3157) and senior design (ECGR3253 and ECGR3254) courses. Theimplementation of the process began by using the rubric in Appendix (a) to evaluate student andteam presentations in each of the four courses above. We videotaped the presentations forstudents to review later so they could learn from their mistakes. We followed teams of studentsfrom the sophomore design in the spring 2012 to the
. Dannels16 draws parallels to the field ofcommunication, asserting that speaking is a contextually-motivated, cultural event. Withprofessional communication instruction becoming increasingly focused on cases and client-basedprojects, and with technology driving changes in workplace writing, writing curriculum ismoving away from formulaic responses to rhetorical situations in favor of providing studentswith some theoretical background in writing and rhetoric.17 Understanding students’ prior genreknowledge is believed to be helpful for designing educational experiences that assist students asthey acquire genre knowledge that will in turn give them strategies they can transfer to newcontexts, which will help them in their engineering careers.12, 18
Paper ID #8159”Doing Engineering in the School of Letters & Science: Adding a Manufac-turing Line Design Project to a Writing Program Class for Engineers”Mr. Brad Jerald Henderson, University of California, Davis Brad Henderson is a faculty in writing for the University Writing Program (UWP) at University of Cali- fornia, Davis. Henderson holds a B.S. degree in mechanical engineering from Cal Poly State University SLO and a Masters in Professional Writing (MPW) from USC. Currently focusing his career on engineer- ing writing and soft-skill education, he has worked as an engineer and engineering educator for Parker
the Collaborative Lounge for Understanding Society and Technology through Educational Research (CLUSTER), an interdisciplinary research group with members from engi- neering, art, educational psychology and social work. He has conducted qualitative educational research in a number of contexts ranging from formation of students’ professional identity, the role of reflection in engineering learning, and engineering students’ creativity development. He was the first international recipient of the ASEE Educational Research Methods Division’s ”Apprentice Faculty Award”, was se- lected as a 2010 Frontiers in Education ”New Faculty Fellow”. In 2011, he received a National Science Foundation CAREER award (#1150668) to