in broadening methodological diversity in EER, 2) persistentunderrepresentation of female faculty, 3) limitations of current metaphors, and 4) the significantstructuring role that metaphors play in our thoughts, actions, and research, we wrote an articlethat put forth a new metaphor-based grounded theory and attempted to explain its significancefor contributing new understandings of the careers of female engineering faculty members. Weturn now to a brief overview of how we analyzed the data for that study, what we found, andhow those findings led to a metaphor-based grounded theory analysis.Data analysis: metaphors as theoretical codesData came from semi-structured interviews with male and female faculty members andadministrators in
education research community in the U.S. has specified the nature of instructionalstrategies in retaining students in STEM-related courses, with a focus on an integrated STEMcurriculum designed to improve non-cognitive factors, such as interest, while developingpositive attitudes towards STEM [5][6][7]. Interests and attitudes in science develop early in astudent’s life, and it is important to develop these attitudes as they are motivators towardspursuing STEM fields and careers [8] [9]. More recently, the National Academies of Sciences,Engineering and Medicine (NASEM) 2017 report on supporting student’s college success hashighlighted the importance of intrapersonal and interpersonal competencies and the evolvingneed for labor market recruits to
. Participants in Vinson and Stevens’ studyreported that industry-based internships helped them to clarify their career pathways [9]. Their studyfound that students who completed multiple internships had a better understanding of the sectors andenvironments in which they would like to work and were able to secure more desirable jobs thanthose who lacked such experience. Extra-curriculars, as Tomlinson notes, help students to build so-called ‘soft credentials,’ which they use to differentiate themselves in the labor market [10].Employers in Atkinson and colleagues’ study believed that extra-curriculars facilitate the formationof leadership, teamwork, and interpersonal skills and that students who participate in them are betterable to get along with a
CommunityChange is hard, a truism that can be highlighted in engineering education in many ways. Themomentum of engineering education in traditional forms, and even the experiences of people inprofessional careers, is hard to shift, but many have tried.1 One can argue that the shift toABET’s EC2000 outcomes-based assessment was meant to serve as a change agent, but after adecade of implementation, engineering education looked pretty much the same. Small changesin programs sometimes stuck, and sometimes programs faded back to the way they were beforeany interventions were attempted. With the idea that maybe things could be different, thatmaybe change could last, a group of engineering educators got together to imagine what anengineering program could look
-based categorization of writing tasks andprojects in undergraduate engineering curricula is critically formative in working toward theholistic integration of writing across courses for the sake of preparation and conceptual-basedstudent understanding of writing practices. Page 26.370.3Introduction Instructors who work in Science, Technology, Engineering and Mathematics (STEM) areasare aware that their students, particularly upper-division undergraduate students, often resistwriting. This happens despite various large-scale studies that emphasize the importance of writingto careers in STEM-related industries1-3. One cause of this
Paper ID #10028Torquing Engineering: Historical and Contemporary Challenges to the Tech-nical Core via InternationalizationProf. Brent K Jesiek, Purdue University, West Lafayette Dr. Brent K. Jesiek is Assistant Professor in the Schools of Engineering Education and Electrical and Computer Engineering at Purdue University. He is also an Associate Director of Purdue’s Global En- gineering Program, leads the Global Engineering Education Collaboratory (GEEC) research group, and is the recent recipient of an NSF CAREER award to study boundary-spanning roles and competencies among early career engineers. He holds a B.S. in
theyprogress through the undergraduate curriculum [1-2]. This has direct implications for thediversity of engineering students and workforces. Research with civil, environmental, andmechanical engineering students also finds that student perceptions of the connection betweensocial responsibility and engineering shape their decisions to stay in their majors, and thatwomen are more likely to leave engineering when they view those connections to be lacking andencounter decontextualized technical courses and unsupportive environments [2-3]. Engineeringeducators frequently invoke research findings that women and racial/ethnic minorities are moresensitive to social justice concerns and more likely to pursue engineering careers with an explicitsense of
, function to privilege and perpetuate certainunderstandings of the field. Autoethnographic techniques are used to construct three accounts ofthe student’s encounters with an upper level administrator, various members of faculty, and anacademic advisor. Critical analysis of these experiences using a prior evidence-based model ofstories ‘told’ about engineering in the public discourse reveals tensions between the freshmanstudent’s values and career interests and the emergent, dominant discourse he observed in hisundergraduate program. These tensions are described in terms of: i) The prioritization of nationaleconomic recovery and growth over the life and career goals of individuals; ii) A predominantfocus on the quantitative and technical aspects of
. For many, the ambassador rolebegins during a large, multi-institution workshop. Post-event surveys reveal high levels ofability, confidence, and preparedness to create and deliver outreach presentations. Post-workshopinterviews reveal that the training offers a platform for role identity development. Theambassador role aligns career-related motivations, resonance with messages contained in theNational Academy of Engineering’s Changing the Conversation report, beliefs about the missionof the EAN, and plans for fulfilling the Network’s mission. After the initial training, students’role identities reflect an integration of their undergraduate engineering student role with the newrole of ambassador, with the intermediary role of an effective
into the Traditional Engineering ClassroomAbstractScience in diplomacy, the use of trained scientist to inform and support foreign policyobjectives, has been a part of U.S. foreign policy since the time of Benjamin Franklin.The Diplomacy Laboratory project, a public-private partnership, allows the Departmentof State to ‘course source’ projects to seek input from universities and to recruit talentedstudents to consider careers in diplomacy. This paper provides a summary of a casestudy using a DipLab project as part of a term-length, writing assignment in courses forundergraduate and graduate environmental engineering students. An overview of DipLaband suggested best practices to integrate DipLab projects into engineering courses is
Paper ID #21888Active Learning Group Work: Helpful or Harmful for Women in Engineer-ing?Ms. Megan Keogh, University of Colorado, Boulder Megan Keogh is an undergraduate student studying environmental engineering and environmental policy at the University of Colorado Boulder. Megan has been involved in education outreach and mentorship for much of her college career. She completed a STEM education class in which she shadowed a local 5th grade teacher and taught three of her own STEM lessons. Megan has also been a new-student mentor through her department’s peer mentoring program. Now, Megan is interested in researching
exposestudents to these complex problems are merited. Engineering has traditionally addressedunintended consequences of technological development (e.g. air pollution), with ‘end-of-pipe’technologies (e.g. scrubbers), but for a more sustainable world, the root causes of wickedproblems must also be addressed and engineering students must learn to analyze and engage withthese root causes.Barriers to Effective InstructionEngineers, engineering educators, and other technical professionals must play a role inresponding to the challenges posed by wicked problems in their careers. Traditional engineeringeducation tends to lack exposure to complex problems.6 As with other ill-structured problems, inorder to solve wicked problems students must develop their own
explore what engineering really means, both to society andthemselves, as well as how they can find success in engineering practice. Students do thisthrough several communication techniques, interactions with professionals, and development oflearning strategies in order to provide exemplars for the required SOs.The initial iteration (fall 2017) of the “What is Engineering?” module, led by Dr. Olga Pierrakos,focused more closely on helping students develop and explore academic and professional goalsand dreams in the context of understanding the engineering profession broadly andunderstanding foundational knowledge that defines engineering practice. Students completed apersonal statement of professional interests and career goals via a worksheet
persistence among diverse students.Placing STEM history and cultures directly in the critical frameworks of WGS may help providethese populations with epistemological and personal insights that boost a sense of belonging inengineering and support their persistence.Numerous studies have addressed aspects of the complex question of student under-representation. The National Academies’ Beyond Bias investigated the factors contributing tounderrepresentation, and determined that biases and structural disadvantages overwhelm talentedwomen and other would-be engineering students. “Women who are interested in science andengineering careers are lost at every education transition,” and “the problem is not simply thepipeline” [1].Concern over the proper
Undergraduate Engineering Outreach 1MotivationWhen undergraduate engineering students participate in various forms of community outreachthrough an ambassador-style group, the mission is often to promote engineering and engineering-related careers to K-12 students and their families, and increase interest in engineering amonghistorically underserved populations. Yet, the preparation and delivery of outreach activities mayalso impact the undergraduate students. In this Work in Progress paper we present the earlyfindings of a project seeking to identify common practices among university-based, ambassadorprograms, with a view to informing communities of researchers and practitioners. We exploredthree questions [1]: (1) What similarities and differences are
do not receive detailedfeedback on style and form. While surveys of recent graduates and engineering department heads support thecontention that these approaches are preparing engineers to write, another survey of industrymanagers refutes that contention. In 2012, an ASME survey of 590 early career engineers foundthat 75 percent assessed their own preparation of engineering writing as sufficient or strong [6].In that same ASME study, a survey of 42 heads of mechanical engineering departments acrossthe United States found that 65 percent viewed their communication programs as strong orsuccessful at preparing engineering students to communicate. In contrast, that same ASME studyconducted a survey of 647 industry supervisors and found
while institutions publicly endorsed Broader Impact relatedactivities (for example, community engagement), the tenure and promotion policies “did notrecognize such activities” nor was there sufficient funding and infrastructure to support theirBroader Impact activities provided13 (p. 82).Another study sought to examine the attitudes and understandings of Broader Impacts criterion of31 faculty members by looking at NSF Faculty Early Career Development (CAREER) awardees,from the Engineering Directorate, at four high research institutions. The CAREER Program is aNational Science Foundation-wide activity that offers the “most prestigious awards in support ofjunior faculty who exemplify the role of teacher-scholars through outstanding research
their major out of engineering. The findings from this earlierwork leads to the question of whether students with greater social motivation might be leavingengineering at a higher rate than others.Why would the social relevance of engineering (or perceived lack thereof) impact whether or notsome students leave engineering? A few underlying issues are likely at work. First, if helpingothers is a primary goal for students in their engineering careers and they lose confidence thatthese goals can be realized, their motivation toward engineering would clearly suffer. Intrinsicmotivation, interest congruence, and values alignment have been linked to retention inengineering in college and likelihood of persistence to engineering careers.10-13 Seeing a
help our students navigate ethicallyambiguous situations and patterns of privilege likely to arise in their professional lives.Unfortunately, there are several barriers to this process. Our critical analysis of career historyinterviews with 15 engineers committed to ethics and equity highlight three such barriers: 1)dominant narratives in engineering that make it difficult for social justice viewpoints to beacknowledged; 2) limited organizational influence on the part of junior engineers trying tochallenge inequitable workplace practices; and 3) a fear that raising equity issues will result inpersonal attacks rather than positive change. Together, these three barriers—raised almostexclusively by female, racially under-represented, and LGBTQ
University of Wisconsin-Madison. Her research is focused on the STEM career pipeline, especially related to engi- neering, engineering education and the molecular biosciences. In addition to her work in education re- search, she is also the Director of scientific courses at the BioPharmaceutical Technology Center Institute in Madison, WI, where she coordinates curricula in the area of molecular biology.Christine G. Nicometo, University of Wisconsin, Madison Christine G. Nicometo is an associate faculty associate in the Engineering Professional Development (EPD) Department at the University of Wisconsin-Madison. Within EPD, she teaches technical commu- nication courses in three programs: Technical Communication Certificate
Professor and Founding Chair of Experi- ential Engineering Education at Rowan University. Dr. Farrell has contributed to engineering education through her work in inductive pedagogy, spatial skills, and inclusion and diversity. She has been hon- ored by the American Society of Engineering Education with several teaching awards such as the 2004 National Outstanding Teaching Medal and the 2005 Quinn Award for experiential learning, and she was 2014-15 Fulbright Scholar in Engineering Education at Dublin Institute of Technology (Ireland).Dr. Rocio C Chavela Guerra, American Society for Engineering Education Rocio Chavela is Director of Education and Career Development at the American Society for Engineering Education (ASEE
written work might include peer reviewsand written instructor’s feedback. Those methods are especially important in online studentlearning communities in which projects can mimic future job tasks as a part of a globalworkforce. Today, various STEM careers do include online data share of written documents andinclude collaborative writing tasks.10Writing in Math-Intensive CoursesStudents who are taking courses with intensive mathematics often have to create their homeworkor project reports using software that includes equation editing tools such as Equation Editor inMS Word or LaTeX, both of which influence students’ thinking and computation process.11 Awriting process is often defined as non-linear, a process that includes revisions, edits
of Engineering(NAE) Grand Challenges of Engineering. To determine if students’ career paths generally led tosolutions for these problems, they were given statistics that showed the companies that are themajor employers for Rowan University graduates. This encouraged students to reflect on theirfuture career paths and to consider whether the companies they may work for are providingsolutions for either the problems students identified or the NAE Grand Challenges ofEngineering. The technical discussion focused on developing the chassis for the drone. Severalstudent groups also gave technical presentations on the topic of FAA regulations for smalldrones.During weeks four and five, we had students explore many issues related to
graduate career was the concept of reflexivity.This reflexivity was represented in my methodological coursework as a tool to be used whileconducting qualitative research. As a means of checks and balances, this tool’s purported usebecame a way to navigate through qualitative research in a manner that acknowledged therelationship between the researcher as an instrument and the processing of information over thecourse of research projects [8]. This navigation can be conceptualized in practices such as fieldtexts and reflections before, after, and during interaction with research participants as a means toshow proof of consideration of positionality, specifically for communities of color [9]. This tool,however, seemed to be accepted as a one size
difference between a successful and a failing career, team, or even corporation. In the lastdecade there have been efforts such as those by the Association of American Colleges and Universities(AAC&U) to advance broad- based systemic innovation to build and sustain strong undergraduateeducation in the STEM fields.Our group is in the early stages of an innovative initiative to provide alternative communication andhumanities learning environments in STEM higher education. The group consists of faculty from severalacademic units including liberal arts, libraries, and technology. One of the learning experiences currentlybeing tested involves the tight coupling of all forms of interpersonal communication, and informationliteracy with technological
major with a high level of one-on-one advising. However, a high degree of flexibility also contributes. In the LSE program,iterative revision and recreation of an individualized curriculum and career plan are understoodas signs of success rather than failure or deviation. Students are encouraged to understand anddesign their major as a “whole-person technical degree” that does not require them to pass, toassimilate, to compartmentalize, or to conform to stereotypes. We suggest that this holisticflexibility may disrupt barriers such as impostor syndrome by positioning the student not asimpostor but as designer and creator – even when enrolled in technical courses in which thesex/gender ratio is skewed male. Lessons learned from “liberal studies
with each other in a substantive way, strengthening the cohort, and supporting retention. - Providing structure for learning library, writing, and presentation skills, etc. - Introducing how professionals handle concepts of politics, tact, and negotiating across boundaries. - Providing an experiential learning environment to understand how politics, both personal and professional, can interact with technical solutions, leading to improvement or disruption in the lives of all. - Starting a discussion about United Nations Sustainable Development Goals early in the careers of engineering students.Certainly, students will see these
valuable. Second, students see the relevance of their experiencein these courses to their chosen careers more clearly. And finally, these intersections begin tobreak down traditional binaries between engineering and the arts within an instructionalenvironment that takes for granted their ability to contribute meaningfully to a discourse that isseparate but complimentary to their own.2. Background:Arguments for a liberal education for engineers identify a number of positive outcomesstemming from required courses in the Humanities and Social Sciences: through immersion inthe liberal arts students become more culturally aware, are capable of inter- and cross-disciplinary collaboration, have stronger communication skills, and are capable of
Purdue University’s ADVANCE program, and PI on the Assessing Sustainability Knowledge project. She runs the Research in Feminist Engineering (RIFE) group, whose projects are described at the group’s website, http://feministengineering.org/. She is interested in creating new models for thinking about gender and race in the context of engineering education. She was recently awarded a CAREER grant for the project, ”Learning from Small Numbers: Using personal narratives by underrepresented undergraduate students to promote institutional change in engineering education.” Page 22.356.1
anandragogical mindset. However the authors cautioned that undergraduate mechanicalengineering students may lack some of the attributes which form the underlying assumptions ofandragogical learning practices. Specifically, young undergraduate mechanical engineeringstudents may be unable to visualize how their education applies to a future career and may lackthe experiences or intrinsic motivation to be an andragogical learner. Correspondingly, Melnykand Novoselich advocated a deliberate and steady increase in self-directed (andragogical)learning practices as students progress along their undergraduate engineering education pathway(Figure 1). Figure 1: Student transition from youth to adult learning over four-year experience. Methods To