State University. He teaches in the areas of introductory materials engineering, polymers and composites, and capstone design. His research interests include evaluating conceptual knowledge, mis- conceptions and technologies to promote conceptual change. He has co-developed a Materials Concept Inventory and a Chemistry Concept Inventory for assessing conceptual knowledge and change for intro- ductory materials science and chemistry classes. He is currently conducting research on NSF projects in two areas. One is studying how strategies of engagement and feedback with support from internet tools and resources affect conceptual change and associated impact on students’ attitude, achievement, and per- sistence. The
/papslcen19/. 2019.[8] D. Gibson, and P. Brackin, “Capstone design projects: Helping the disabled” in Proceedings of the 2002 Annual Conference, Montreal, Canada. June, 2012. Available: https://peer.asee.org/10407[9] S. B. Niku, and R. J. Miller, “Designing Devices to Help the Disabled” in Proceedings of the 2011 ASEE Annual Conference & Exposition, Vancouver, BC. June, 2011. Available: https://peer.asee.org/17724[10] M. Pilotte and D. Bairaktarova, “Autism spectrum disorder and engineering education- needs and considerations,” Proceedings of the 2016 Frontiers in Education Conference, Erie, PA, October 2016.[11] C. J. Groen, M. C. Paretti, L. D. McNair, D. R. Simmons, and A. Shew
Stanford University. Subsequently, he was a Postdoctoral Fellow in the Department of Computer Science, also at Stanford University. He has been with the Department of Aerospace Engineering at Illinois since 2006, where he now serves as Associate Head for Undergraduate Programs. He holds an affiliate appointment in the Coordinated Science Laboratory, where he leads a research group that works on a diverse set of projects (http://bretl.csl.illinois.edu/). Dr. Bretl received the National Science Foundation Early Career Development Award in 2010. He has also received numerous awards for undergraduate teaching in the area of dynamics and control, including all three teaching awards given by the College of Engineering at
AC 2012-4072: DEVELOPMENT OF A CRYSTAL SPATIAL VISUALIZA-TION SURVEY FOR INTRODUCTORY MATERIALS CLASSESProf. Stephen J. Krause, Arizona State University Stephen J. Krause is professor in the School of Materials in the Fulton School of Engineering at Arizona State University. He teaches in the areas of bridging engineering and education, capstone design, and introductory materials engineering. His research interests are evaluating conceptual knowledge, miscon- ceptions and their repair, and conceptual change. He has co-developed a Materials Concept Inventory for assessing conceptual knowledge of students in introductory materials engineering classes. He is currently conducting research on misconceptions and
Paper ID #14943Effect of Contextualization of Content and Concepts on Students’ CourseRelevance and Value in Introductory Materials ClassesProf. Stephen J. Krause, Arizona State University Stephen Krause is professor in the Materials Science Program in the Fulton School of Engineering at Arizona State University. He teaches in the areas of introductory materials engineering, polymers and composites, and capstone design. His research interests include evaluating conceptual knowledge, mis- conceptions and technologies to promote conceptual change. He has co-developed a Materials Concept Inventory and a Chemistry Concept
developed tomaintain technical rigor in material selection methodology, yet promote creativity and originalityin engineering problem solving.Future WorkThe flexibility of these exercises can be adapted to any group of students and may also focus onthe group’s personal or professional interests. So, current events in mass media, newspapers andmagazines have the potential to lead to the development of materials selection exercises. Otherpossible applications may be in a manufacturing processes course, product design application,and a capstone design projects. Utilization of the CES EDUPack software can be implemented ina variety of ways, from information attained on the material records to setting up limit stages tonarrowing the choices of materials
AC 2009-1685: HANDS-ON LAB DEMONSTRATION TO TEACH HOWMECHANICAL PROPERTIES CHANGE DUE TO COLD WORKING ANDRECRYSTALLIZATIONDaniel Magda, Weber State University Page 14.663.1© American Society for Engineering Education, 2009 Hands on Lab Demonstration to Teach how Mechanical Properties Change Due to Cold Working and RecrystallizationAbstractLaboratories that employ hands-on demonstration to change material properties play animportant role in understanding why materials are selected for different design specifications.Engineering students take courses in mechanics of material, machine design, finite elementanalysis and capstone senior projects. These courses require
Institute of Technology Simo Pajovic is a graduate student in the MIT Department of Mechanical Engineering, where his research focuses on nanoscale transport phenomena. In 2019, he graduated from the University of Toronto with a B.ASc. in Mechanical Engineering. His capstone project was to design and prototype a benchtop universal testing machine for educational use. As an undergraduate research assistant, he worked on micromechanical characterization of lubricants used in aerospace applications and later designing and prototyping medical devices.Mr. Cheuk Yin Larry Kei, University of Toronto Larry Kei obtained his BASc in Civil Engineering at the University of Toronto in 2019. He is currently working in the
Paper ID #29682Enhancing Instruction by Uncovering Instructor Blind Spots from MuddiestPoint Reflections in Introductory Materials ClassesProf. Stephen J Krause, Arizona State University Stephen Krause is professor in the Materials Science Program in the Fulton School of Engineering at Arizona State University. He teaches in the areas of introductory materials engineering, polymers and composites, and capstone design. His research interests include evaluating conceptual knowledge, mis- conceptions and technologies to promote conceptual change. He has co-developed a Materials Concept Inventory and a Chemistry Concept
Paper ID #12051The Impact of Two-Way Formative Feedback and Web-Enabled Resourceson Student Resource Use and Performance in Materials CoursesDr. Stephen J Krause, Arizona State University Stephen Krause is professor in the Materials Science Program in the Fulton School of Engineering at Arizona State University. He teaches in the areas of introductory materials engineering, polymers and composites, and capstone design. His research interests include evaluating conceptual knowledge, mis- conceptions and technologies to promote conceptual change. He has co-developed a Materials Concept Inventory and a Chemistry Concept
. Consequently, these industry projects can be considered as a part of capstone designcourses of the academic institutions.AcknowledgementsThis work was supported by the Center for Advanced Vehicular Systems (CAVS) at MississippiState University and by the U.S Department of Energy, under contract DE-FC26-06NT42755and NSF Grant CBET074273008010004Bibliography1. National Research Council (U.S), “Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security,” The National Academies Press, 2008.2. M.F. Horstemeyer, “Multiscale modeling: A review,” in Practical Aspects of Computational Chemistry, J. Leszczynski and M. K. Shukla, Eds. Springer Netherlands, 2010, pp. 87–135.3. C
Paper ID #7130Muddiest Point Formative Feedback in Core Materials Classes with YouTube,Blackboard, Class Warm-ups and Word CloudsProf. Stephen J Krause, Arizona State University Stephen J. Krause is a professor in the School of Materials in the Fulton School of Engineering at Arizona State University. He teaches in the areas of bridging engineering and education, capstone design, and introductory materials engineering. His research interests are evaluating conceptual knowledge, miscon- ceptions and their repair, and conceptual change. He has co-developed a Materials Concept Inventory for assessing conceptual knowledge
Academics, an alternative arts high school.Stephen J Krause, Arizona State University Stephen J. Krause is Professor in the School of Materials in the Fulton School of Engineering at Arizona State University. He teaches in the areas of bridging engineering and education, capstone design, and introductory materials engineering. His research interests are evaluating conceptual knowledge, miscon- ceptions and their repair, and conceptual change. He has co-developed a Materials Concept Inventory for assessing conceptual knowledge of students in introductory materials engineering classes. He is cur- rently conducting research with NSF sponsored projects in the areas of: Modules to Promote Conceptual Change in an Introductory
of students in introductory materials engineering classes. Most recently, he has been working on Project Pathways, an NSF supported Math Science Partnership, in developing modules for a courses on Connecting Mathematics with Physics and Chemistry and also a course on Engineering Capstone Design.Amaneh Tasooji, Arizona State University Amaneh Tasooji is an Associate Research Professor in the School of Materials at ASU and has been teaching and developing new content for materials science and engineering classes and laboratories. She has developed new content and contextual teaching methods from here experience as a researcher and a manager at Honeywell Inc. She is currently working to develop
at Arizona State University. He teaches in the areas of bridging engineering and education, design and selection of materials, general materials engineering, polymer science, and characterization of materials. His research interests are in innovative education in engineering and K-12 engineering outreach. He has been working on Project Pathways, an NSF supported Math Science Partnership, in developing modules for Physics and Chemistry and also a course on Engineering Capstone Design. He has also co-developed a Materials Concept Inventory for assessing fundamental knowledge of students in introductory materials engineering classes.Jacquelyn Kelly, Arizona State University
senior capstone course. Page 26.222.1 c American Society for Engineering Education, 2015 Application of Life Cycle Analysis to Systems in an Introductory Materials CourseAbstract:Application of materials Life Cycle Analyses (LCA) to structures and systems addresses bothcourse outcomes, such as ABET 9a, 3i, 3j, and our program objectives. This effort is directed atimproving pedagogy in an introductory materials course to meet the above goals, and 3j (societaland global issues) specifically.The field of LCA is quite mature and has typically been presented in
outreach with underrepresented groups in STEM.Dr. Lauren Anne Cooper, California Polytechnic State University, San Luis Obispo Lauren Cooper earned her Ph.D. in Mechanical Engineering with a research emphasis in Engineering Education from University of Colorado Boulder. She is currently an Assistant Professor in Mechanical Engineering at California Polytechnic State University in San Luis Obispo. Her research interests include project-based learning, student motivation, human-centered design, and the role of empathy in engineering teaching and learning.Dr. Trevor Scott Harding, California Polytechnic State University, San Luis Obispo Dr. Trevor S. Harding is Professor and Department Chair of Materials Engineering at
J Krause, Arizona State University Stephen Krause, Arizona State University Stephen J. Krause is Professor in the School of Materials in the Fulton School of Engineering at Arizona State University. He teaches in the areas of bridging engineering and education, design and selection of materials, general materials engineering, polymer science, and characterization of materials. His research interests are in innovative education in engineering and K- 12 engineering outreach. He has been working on Project Pathways, an NSF supported Math Science Partnership, in developing modules for Physics and Chemistry and also a course on Engineering Capstone Design. He has also co-developed a Materials Concept Inventory for
States.Dr. Tanya A. Faltens, Purdue University, West Lafayette Tanya Faltens is the Educational Content Creation Manager for the Network for Computational Nanotech- nology (NCN) which created the open access nanoHUB.org cyber-platform. Her technical background is in Materials Science and Engineering (Ph.D. UCLA 2002), and she has several years’ experience in hands-on informal science education, including working at the Lawrence Hall of Science at UC Berkeley. While at Cal Poly Pomona, she taught the first year engineering course, mentored student capstone re- search projects, and introduced nanoHUB simulation tools into the undergraduate curriculum in materials science and engineering and electrical engineering courses
advises the Society of Women Engineers student chapter and leads the students in developing and implementing yearly outreach events for the K-8 female community. She is author of many peer-reviewed conference proceeding and journal papers in the areas of both porous metals and engineering education.Prof. Stephen J. Krause, Arizona State University Stephen Krause is professor in the Materials Science Program in the Fulton School of Engineering at Arizona State University. He teaches in the areas of introductory materials engineering, polymers and composites, and capstone design. His research interests include evaluating conceptual knowledge, mis- conceptions and technologies to promote conceptual change. He has co
Paper ID #10445Characterizing and Addressing Student Learning Issues and Misconceptions(SLIM) with Muddiest Point Reflections and Fast Formative FeedbackProf. Stephen J Krause, Arizona State University Stephen J. Krause is professor in the Materials Program in the Fulton School of Engineering at Arizona State University. He teaches in the areas of bridging engineering and education, capstone design, and introductory materials science and engineering. His research interests include strategies for web-based teaching and learning, misconceptions and their repair, and role of formative feedback on conceptual change. He has co
learning contexts.Dr. Tanya Faltens, Purdue University, West Lafayette Tanya Faltens is the Educational Content Creation Manager for the Network for Computational Nanotech- nology (NCN) which created the open access nanoHUB.org cyber-platform. Her technical background is in Materials Science and Engineering (Ph.D. UCLA 2002), and she has several years’ experience in hands-on informal science education, including working at the Lawrence Hall of Science at UC Berkeley. While at Cal Poly Pomona, she taught the first year engineering course, mentored student capstone re- search projects, and introduced nanoHUB simulation tools into the undergraduate curriculum in materials science and engineering and electrical engineering
) Biomaterials Science: AnIntroduction to Materials in Medicine and Dowling’s Mechanics of Materials books wereespecially useful references 28,29. Callister’s Fundamentals of Materials Science andEngineering text also contains a web based supplemental chapter 30 that is helpful as is theUniversity of Cambridge’s on-line Teaching and Learning Package (TLP) on the structure ofbone and implant materials 31. In fact, having the students complete this well-developed andinteractive TLP as a homework assignment or in-class project (if computers are available) is anexcellent way to introduce your students to biomedical materials and design. Dr. Pruitt’s Page