Paper ID #5950Infusing Mechatronics and Robotics Concepts in Engineering CurriculumDr. Anca L. Sala, Baker College of Flint Dr. Anca L. Sala is Professor and Dean of Engineering and Computer Technology at Baker College of Flint. In addition to her administrative role she continues to be involved with development of new engineering curriculum, improving teaching and assessment of student learning, assessment of program outcomes and objectives, and ABET accreditation. She is an active member of ASEE, ASME, and OSA serving in various capacities
than 1400 were built during the 18th Century. Newcomen’s design condensed steam insidea piston and cylinder through a water spray injection process. The vacuum formed in thecylinder, in combination with atmospheric pressure on the top of the piston, actuated areciprocating pump via an overhead “walking beam.” This first engine served to pump waterfrom a coal mine in England, but the power technology thus created enabled the IndustrialRevolution and sees its legacy in the steam-powered utility power plants of today.In commemoration of the tercentenary of Newcomen’s engine, a group of MechanicalEngineering students at the United States Naval Academy designed and built an instrumentedoperating model of a Newcomen engine. A significant aspect of
to interactive games and the Internet. They are accustomed tochoosing what they want to see, and they “pull” whatever content they desire. Teachers can bemore effective for a broader set of students by employing a modality with which students arealready very familiar.In addition to the rapid pace of technological change, engineering is also becoming increasinglyinterdisciplinary. While exercises and problem sets work well to test a student’s grasp ofindividual ideas, we believe that the integration and application of multiple concepts is bestapplied in larger project or lab settings. Traditionally, undergraduate curricula in mechanicalengineering include a capstone design project that occurs during the senior year. Students inengineering at
acting chair (1985-1987) of the Mechanical Engineering of the University of Delaware.Reza Mirshams, University of North Texas Professor Reza Mirshams is Associate Dean of Engineering for Academic Affairs at the University of North Texas. Dr. Mirshams has degrees in Industrial Metallurgy and Metallurgical Engineering in the area of mechanical behavior of metals and alloys from the University of Birmingham, England and the University of Tehran. He is a Full Professor in the area of Materials Science and Engineering in the Engineering Technology with joint appointment in the Materials Science and Engineering Departments. He has been a Principal Investigator and Project Director for several
Inst. of Tech. Page 11.769.1© American Society for Engineering Education, 2006 Innovative methods in teaching fundamentals of undergraduate engineering courses Amir G. Rezaei, Ph.D. Marco P. Schoen Ph.D. Gurdeep Hura, Ph.D. Umesh Korde, Ph.D. Mechanical Engineering Department California State University, Pomona Idaho State University West Virginia University Institute of Technology
current focus on meeting customer needs through the use ofvalues-driven, multifunctional project teams has recruiters looking for graduates that possess“soft skills” such as communications, teamwork, project management, and professional ethics.Moreover, the rapid pace of technological innovation and changing markets requires graduatingengineers to be skilled in the art of life long learning. As society becomes evermore driven bytechnology, there will be a growing need for articulate, team-oriented, socially-aware, andvalues-driven engineers to move into positions of global leadership. ABET 2000 challengesengineering schools to produce graduates with these skills. The Department of Mechanical andAerospace Engineering (MAE) at Arizona State
Paper ID #18255The Role of Andragogy in Mechanical Engineering EducationLt. Col. Richard Melnyk, U.S. Military Academy LTC Rich Melnyk is an Army Aviator and Assistant Professor in the Department of Civil and Mechanical Engineering at the United States Military Academy, West Point. He was an Instructor and Assistant Professor from 2004-2007 and returned to teaching in 2015. He has a PhD in Aerospace Engineering, a PE in Mechanical Engineering, an MBA in Technology Management and recently commanded a Battalion at Hunter Army Airfield, Savannah, Georgia.Lt. Col. Brian J. Novoselich, U.S. Military Academy Brian Novoselich
2006-172: A WEB ENABLED STUDY OF MECHANICAL ENGINEERINGBenson Tongue, University of California-Berkeley Benson Tongue is a Professor of Mechanical Engineering at the University of California, Berkeley. He received his MS from Stanford University and his BSE, MA, and PhD from Princeton University. He taught from 1983-1988 at the Georgia Institute of Technology and has been at Berkeley since 1988.Eric Lew, University of California-Berkeley Eric Lew is an undergraduate student, majoring in Mechanical Engineering at the University of California, Berkeley. His projected graduation date is May 2007
AC 2012-4127: LEARNER CENTERED INSTRUCTION IN MECHANI-CAL ENGINEERING PROGRAMMr. Tom Spendlove, Baker College, Flint Tom Spendlove teaches engineering and CAD courses at Baker College in Flint, Mich.Dr. Anca L. Sala, Baker College, Flint Anca L. Sala is professor and Dean of engineering and computer technology at Baker College of Flint. In addition to her administrative role, she continues to be involved with development of new engineering curriculum, improving teaching and assessment of student learning, assessment of program outcomes and objectives, and ABET accreditation. She is an active member of ASEE, ASME, and OSA, serving in various capacities.Mr. James Riddell, Baker College, Flint James A. Riddell is
AC 2011-1278: THERMAL SCIENCE CAPSTONE PROJECTS IN ME-CHANICAL ENGINEERINGNihad Dukhan, University of Detroit Mercy Nihad Dukhan is an Associate Professor of Mechanical Engineering at the University of Detroit Mercy, where he teaches courses in heat transfer, thermodynamics, fluid mechanics and energy systems. His ongoing research interests include advanced cooling technologies for high-power devices with focus on metal foam as the cooling core, service learning and other engineering education pedagogies. Dr. Dukhan earned his BS, MS, and Ph.D. degrees in Mechanical Engineering from the University of Toledo.Mark Schumack, University of Detroit Mercy Mark Schumack is Professor of Mechanical Engineering at the
[1] G. D. Kuh, "High-Impact Educational Practices: What They Are, Who Has Access to Them, and Why They Matter," AAC&U, 2008.[2] R. Poth, "EasyBib," 9 November 2016. [Online]. Available: http://www.easybib.com/guides/project-based-learning-benefits-students/. [Accessed 22 September 2018].[3] J. Thomas, "A REVIEW OF RESEARCH ON PROJECT-BASED LEARNING," The Autodesk Foundation, San Rafael, 2000.[4] S. Han, R. Capraro and M. M. Capraro, "HOW SCIENCE, TECHNOLOGY, ENGINEERING, AND MATHEMATICS (STEM) PROJECT-BASED LEARNING (PBL) AFFECTS HIGH, MIDDLE, AND LOW ACHIEVERS DIFFERENTLY: THE IMPACT OF STUDENT FACTORS ON ACHIEVEMENT," International Journal of Science and Mathematics Education, vol. 13, no. 5, pp. 1089-1113, 2015
electrical engineering and real-timeprogramming integrated to the design process [6]. Modern mechatronics facilitates thedevelopment of products and systems that have new and novel technologies that arefunctionally integrated with information technology and software engineering. As Aboud andHaris [7] put it ‘A typical mechatronic system receives signals from the environment, processesthem to generate new signals, which becomes inputs to actuating mechanisms, translating theminto forces, movements and actions’. It has been said that an ideal mechatronic solution wouldbe that where a deficiency of the mechanical system could be cost-effectively compensated bya suitable control engineering solution. The application areas of mechatronics include
. A. High. A Pilot Study for Creativity Experiences in a Freshman Introduction to Engineering Course. 2003 ASEE Annual Conference and Exposition.4. K. F. Reardon. A Project-Oriented Introduction to Engineering Course. 2001 ASEE Annual Conference and Exposition.5. F. J. Rubino. Project Based Freshman Introduction to Engineering Technology Course. 1998 ASEE Annual Conference.6. G. Wight, R. D. Friend, J. Beneat, and W. Barry. Project-Based Introduction to Engineering for Freshmen Students. 2008 ASEE Annual Conference and Exposition.7. H. A. Canistraro, P. Katz, J. Girouard, A. Lankford, and J. Dannenhoffer. A New Approach to the Introduction to Technology Course at a Four Year College of Engineering
forEngineering and Technology) Criterion 4 implicitly specifies creativity as follows: “Theengineering sciences have their roots in mathematics and basic sciences but carry knowledgefurther toward creative application. These studies provide a bridge between mathematics andbasic sciences on the one hand and engineering practice on the other.” Once more explicitstandards for creativity are developed by ABET, Smith11 proposes that senior engineeringstudents could be taught TRIZ during the capstone project stage of their education. However,ideally the capstone course should only be a demonstration of previous learning. So, it may bemore desirable to teach creativity prior to the capstone and perhaps even in several differentcourses to reinforce the
Paper ID #9049Predicting Entrepreneurial Intent among Entry-Level Engineering StudentsDr. Mark F Schar, Stanford University Dr. Schar works in the Center for Design Research - Designing Education Lab at Stanford University. He is also a member of the Symbiotic Project of Affective Neuroscience Lab at Stanford University and a Lecturer in the School of Engineering. Dr. Schar’s area of research is ”pivot thinking” which is the intersection of design thinking and the neuroscience of choice where he has several research projects underway. He has a 30 year career in industry as a Vice President with The Procter & Gamble
discipline. Darmofal, Soderholm, andBrodeur applied concept maps and concept questioning to enhance conceptual understanding inaeronautics and astronautics courses at the Massachusetts Institute of Technology5. Yap andWong assessed conceptual learning at the Nanyang Technological University, Singapore 6.Brodeur, Young, and Blair utilized problem based learning as a form of conceptual learning inthe aeronautics and astronautics curriculum at the Massachusetts Institute of Technology7. This paper presents a methodology for instruction and testing in an engineering course based Page 14.908.2on conceptual learning techniques. The examinations within an
Paper ID #20385Material and Processing Basics Through Reverse EngineeringProf. Somnath Chattopadhyay, University at Buffalo, SUNY Dr. Somnath Chattopadhyay teaches mechanics, materials, manufacturing and design at University at Buffalo He has authored a text on Pressure Vessel s and till recently was an Associate Editor of the ASME Journal of Pressure Vessel Technology. His research interests are in the areas of fatigue and fracture of metals, carbon nanotubes, multi-scale material modeling and engineering education. He had a very successful industrial career with Westinghouse Electric where he directed and performed
by the PER group includesassessment (conceptual, belief-oriented and epistemological), examination of successfuleducational reforms and replication studies, social and contextual foundations of studentlearning, and student problem-solving and technology in physics.9Engineering Concept InventoriesInspired by the physics Force Concept Inventory, the Foundation Coalition — a partnership ofsix universities funded by the National Science Foundation — has collaborated to developconcept inventories (CIs) for specific engineering disciplines, including: Strength of Materials,Dynamics, Circuits, Fluid Mechanics, Heat Transfer, Thermodynamics and Materials.10-15The primary objectives of the Foundation Coalition CIs are to assess student knowledge
, thermodynamics, and numerical methods. Paul’s research interests are studying the impact of technology in engineering education and computer modeling of atmospheric systems.Dr. Angela C. Shih, California State Polytechnic University, Pomona c American Society for Engineering Education, 2016 A Hands-on, First Year Mechanical Engineering Course1 Background Cal Poly Pomona is one of the only seven polytechnic universities in the nation and its Collegeof Engineering graduates 1 of every 14 engineers in the state of California. Our engineeringgraduates are well-respected and employed by both large corporations and small businesses inCalifornia and around the country. There is a greater need today to
consensus thatearly-career mechanical engineers need more practical experience and better integration oftechnical and professional skills. There is less clarity on the value of any given technical topic.Even so, handbooks, working engineers, and job advertisements can support development ofuseful technical curriculum content.IntroductionEngineering curriculum evolves gradually over time in response to technological developments,institutional pressures, new pedagogical methods, and shifts in industry demand. Engineeringcurriculum is rarely designed—that is, developed to meet a need by iteratively inventing optionsand selecting the best ones based on evidence.Engineering curriculum has evolved in ways that are inconsistently tied to evidence
- ical Engineering where he is a Ray Butler Distinguished Educator and Piper Professor Award recipient. Since returning to the faculty after several different administrative assignments, including Departmental Chairman, Assistant Dean, and Director of the TTU Teaching, Learning and Technology Center, he has focused upon engineering student learning research with an eye upon how to use these findings to im- prove traditional and computer-based learning. Recently, he received the Premier Award for excellence in engineering education courseware.John Richard Schumacher, Texas Tech University I am a PhD in Cognitive Psychology at Texas Tech University. My primary research interests lie in studying memory as it applies to
solutions society via MechanicalMechanical to problems EngineeringEngineering? Processes Areas missing – Design (19) nano-technology, Design related to real sensing systems, world problems/efficient etc. Students see Mechanical effective tools/practical Engineering as a broad problem solving (7) Students kept applied field combining Problem solving, coming back to areas of content and process creativity, open-minded, creative problem etc. (7
AC 2008-1040: RISK ASSESSMENT OF A MECHANICAL ENGINEERINGDEPARTMENTGreg Kremer, Ohio University-Athens Dr. Kremer is an Associate Professor and Chair of the Mechanical Engineering Department at Ohio University. He teaches in the Mechanical Design area and has primary responsibility for the Capstone Design Experience. His main research interests are Energy and the Environment, especially as related to vehicle systems, and engineering education, especially related to integrated learning and professional skills. Dr. Kremer received his B.S. degree in Mechanical Engineering from Rose-Hulman Institute of Technology in 1989, his Ph.D. degree in Mechanical Engineering from the University of
the Chair of a suc- cessful new Aerospace Technology degree program. Prior to Academia he was an engineering manager at Alstom Gas Turbines in the U.K and a consulting engineer for both Rolls Royce and BMW. He now resides in Connecticut and is a licensed professional engineer and a licensed U.S Coast Guard Captain. c American Society for Engineering Education, 2019 Bilge Pumps as Introductory Mechanical Engineering Design ProjectsStudents in the Mechanical Engineering program at United States Coast Guard Academy taketheir first major course during their Spring Semester, Sophomore Year. Introduction toMechanical Engineering Design includes a design project which requires the students to
interdependence of engineering andmathematics and thus, a perfect problem for use in this linked-class PBL project. For the detailsof this project see [14].The engineering and mathematics faculty worked to implement further connections throughoutthe course with topic specific assignments and additional material. A calculus class period wasdevoted to the theory of solving systems of equations and how to use technology to assist in thisprocess. Engineering data which required a log scale for data analysis initiated the calculuscontent of logarithmic and exponential functions. Vectors and their operations are generally notdiscussed in the calculus curriculum until multi-dimensional calculus found in Calculus III. Inorder to assist the students in
and complete a quality project build. The idea was to insure that the students hadcompleted enough of the build to gain the understanding about machining and tolerancing earlyin the semester. That way they would be able to complete the build and create a well-functioningdevice by the end of the semester. The second change that was made to the machine designproject build was the encouragement of using rapid prototyping technology. Students wereencouraged to use the engineering program’s rapid prototyping machine to explore fit andfunction before spending a lot of time machining the finished version of complicated parts. Theywere also allowed to use the rapid prototyping machine to create finished components if thestresses in their design
22.1255.4Timoshenko allows us access into a detailed and rich history of engineering education’sdevelopment during the first half of the tumultuous twentieth century. Universities, researchinstitutes, laboratories, scientists, faculty members and students have the most relevant place inthe Timoshenko’s autobiography As I Remember. In his narration, the Bolshevik Revolution,World War I, and the rise of Nazis in Germany are the context through which engineering andthe sciences go forward into a new technological era. Timoshenko also devotes many episodes toexplain his teaching and learning experiences and his vision about comparisons amongengineering curricula in different countries. He taught in Russia, Yugoslavia, and in theAmerican East, Midwest, and West
Paper ID #31009Design Course in a Mechanical Engineering CurriculumDr. Jamie Szwalek, University of Illinois at Chicago Dr. Jamie Szwalek is currently a Clinical Assistant Professor at University of Illinois at Chicago in Mechanical and Industrial Engineering.Dr. Yeow Siow, The University of Illinois at Chicago Dr. Yeow Siow has over fifteen years of combined experience as an engineering educator and practi- tioner. He received his B.S., M.S., and Ph.D. from Michigan Technological University where he began his teaching career. He then joined Navistar’s thermal-fluids system group as a senior engineer, and later brought
, mechanical engineering departments around the country have prepared for visitsby the Accreditation Board for Engineering and Technology (ABET). Typically, the preparationfor these visits and accompanying reports could be generated quickly and often by a singleindividual. The data that was collected was often referred to as “bean counting” as the number ofcredits in mathematics, physics, design, thermodynamics, etc. were simply counted and enteredon a form. The evolution of the ABET 2000 Criteria has forced mechanical engineeringdepartments to reconsider the age-old methods of evaluating the education that is provided totheir students.According to Lohmann1, one of the most important pieces of the process is to gather largeamounts of data from a
arethinking about purpose.Bibliography1 Criteria for Accrediting Engineering Programs,” October 31, 2009, ABET Inc.2 “University Relations: Desired Attributes of an Engineer,” Boeinghttp://www.boeing.com/educationrelations/attributes.htms3 Clooney, E., Alfrey, K., and Owens, S., “Critical Thinking in Engineering and Technology Education: A Review,”Proceedings of the 2008 American Society for Engineering Education Annual Conference and Exposition, ASEE4 Worldwide CDIO Initiative. https://www.cdio.org, January 20095 Agrawal, Pradeep K. “Integration of Critical Thinking and Technical Communication into UndergraduateLaboratory Courses.” Proceedings of the 1997 American Society for Engineering