Paper ID #22549Incorporating IMU Technology to Demonstrate Concepts in UndergraduateDynamics CoursesMs. Rachel Vitali, University of Michigan Rachel Vitali is a doctoral candidate in the Mechanical Engineering department at the University of Michi- gan, where she also received her B.S.E. in 2015 and M.S.E in 2017. Her research interests include compu- tational and analytical dynamics with applications to wearable sensing technology for analysis of human motion in addition to incorporating technology into undergraduate courses for engaged learning.Dr. Noel C. Perkins, University of Michigan Noel Perkins is the Donald T
Tool," Journal of Online Engineering Education, vol. 1, no. 2, 2010. [8] J. Lux and B. Davidson, "Guildelines for the development of computer‐based instruction modules for science and engineering," Mechanical and Aerospace Engineering, 2003. [9] N. Hubing, D. Oglesby, T. Philpot, V. Yellamraju, R. Hall and R. Flori, "Interactive Learning Tools: Animating Statics," in American Society for Engineering Education, 2002. [10] S. W. St. Clair and N. Baker, "Pedagogy and Technology in Statics," in American ociety for Engineering Education, 2003. Page 25.178.9
Paper ID #33966Gamification Design for Engineering StaticsDr. Anna K. T. Howard, North Carolina State University at Raleigh Anna Howard is a Teaching Professor at NC State University in Mechanical and Aerospace Engineering where she has led the course redesign effort for Engineering Statics. She received her Ph.D. from the Rotorcraft Center of Excellence at Penn State University in 2001. American c Society for Engineering Education, 2021 2021 ASEE Annual Conference Gamification Design for Engineering Statics: 4
2006-1652: INTRODUCTION OF EMERGING TECHNOLOGIES IN MECHANICSOF MATERIALSHonghui Yu, The City College of New YorkFeridun Delale, The City College of New York Page 11.839.1© American Society for Engineering Education, 2006 Introduction of Emerging Technologies in Mechanics of Materials Abstract Though technologies have advanced dramatically in the last century and Mechanicsof Materials(MoM) has found more applications in many new technologies, the MoMcurriculum has been fixed for decades. This paper presents our efforts in keeping MOMcurriculum current with the times by incorporating examples from emerging technologiesand everyday
AC 2007-670: USING TECHNOLOGY TO ENHANCE THE TRADITIONALLECTUREDoug Carroll, University of Missouri Dr. Douglas R. Carroll, PE is a Professor in the Interdisciplinary Engineering Department at the University of Missouri-Rolla. He is best known for his work with solar powered race cars, winning two national championships and publishing a book on solar car design. He has received many teaching awards in his career. His research interests are composite materials, solar-electric vehicle technology, and educational research.Hong Sheng, University of Missouri Dr. Hong Sheng is an Assistant Professor holding joint position at the Business Administration Department, and Information Science and
2006-1321: A COMPARISON BETWEEN THE ENGINEERINGMECHANICS-STRENGTH OF MATERIALS COURSE IN THE ENGINEERING,AND ENGINEERING TECHNOLOGY PROGRAMS AT PENN STATELucas Passmore, Pennsylvania State UniversityAiman Kuzmar, Pennsylvania State University-Fayette Page 11.26.1© American Society for Engineering Education, 2006 A Comparison Between the Engineering Mechanics-Strength of Materials Course in the Engineering, and Engineering Technology Programs at The Pennsylvania State UniversityAbstractStrength of materials is a critical and essential course for both engineering and engineeringtechnology students with a mechanical focus such as those in the mechanical
Paper ID #21453Helping Students Learn Engineering Mechanics Concepts Through Integra-tion of Simulation Software in Undergraduate CoursesLt. Col. Jakob C Bruhl P.E., U.S. Military Academy Lieutenant Colonel Jakob Bruhl is an Assistant Professor in the Department of Civil and Mechanical Engineering at the United States Military Academy, West Point, NY. He received his B.S. from Rose- Hulman Institute of Technology, M.S. Degrees from the University of Missouri at Rolla and the University of Illinois at Urbana/Champaign, and Ph.D. from Purdue University. He is a registered Professional Engineer in Missouri. His research
Paper ID #32253In-Class Real-Time Assessments of Students’ Fundamental Vector andCalculus Skills in an Undergraduate Engineering Dynamics CourseProf. Ning Fang, Utah State University Ning Fang is a Professor in the Department of Engineering Education at Utah State University, U.S.A. He has taught a variety of courses at both graduate and undergraduate levels, such as engineering dy- namics, metal machining, and design for manufacturing. His areas of interest include computer-assisted instructional technology, curricular reform in engineering education, and the modeling and optimization of manufacturing processes. He earned
AC 2008-249: INTEL: INTERACTIVE TOOLKIT FOR ENGINEERINGEDUCATIONCalvin Ashmore, Georgia Institute of TechnologyDaniel Upton, Georgia Institute of TechnologyBo Yeon Lee, Georgia Institute of TechnologyGeoff Thomas, Georgia Institute of TechnologySneha Harrell, UC BerkeleyChristine Valle, Georgia Institute of TechnologyJanet Murray, Georgia Institute of TechnologyWendy Newstetter, Georgia Institute of TechnologyLaurence Jacobs, Georgia Institute of TechnologySue Rosser, Georgia Institute of Technology Page 13.778.1© American Society for Engineering Education, 2008 InTEL : Interactive Toolkit for Engineering LearningAbstractStatics, a foundational engineering course
AC 2011-847: IDENTIFYING AND ADDRESSING STUDENT DIFFICUL-TIES IN ENGINEERING STATICSAndrea Brose, Hamburg University of Technology Andrea Brose earned her Ph.D. in mathematics from the University of Colorado at Boulder. From 1999 to 2008 she was in the Department of Mathematics at UCLA where she taught undergraduate math, led and developed the mathematics teaching assistant and faculty training program, and contributed to other aspects of academic administration. Since 2009, she is involved in a project on ”Active Learning in Engineering Education” at Hamburg University of Technology.Christian H. Kautz, Hamburg University of Technology Christian H. Kautz received his doctorate degree from the University of
Paper ID #29395Classroom Demonstration Module for Two and Three Dimensional ForceAnalysis : The Montessori Based Engineering (MBE) ModelDr. Anuja Kamat, Wentworth Institute of Technology Anuja Kamat is an Associate Professor in the Civil Engineering Department at Wentworth Institute of Technology, Boston. Prof. Kamat received her Ph.D. in Civil Engineering from the University of Arizona, Tucson and MS in Civil Engineering from the University of Illinois, Urbana - Champaign . She also has a BE in Construction Engineering from University of Mumbai and Diploma in Civil Engineering from Government Polytechnic, Mumbai. Prof
Paper ID #11167Testing the flipped classroom approach in engineering dynamics classDr. Xiaobin Le P.E., Wentworth Institute of Technology Associate professor, Ph.D, PE., Department of Mechanical Engineering and Technology, Wentworth In- stitute of Technology, Boston, MA 02115, Phone: 617-989-4223, Email: Lex@wit.edu, Specialization in Computer Aided Design, Mechanical Design, Finite Element Analysis, Fatigue Design and Solid Me- chanicsDr. Gloria Guohua Ma, Wentworth Institute of TechnologyProf. Anthony William Duva P.E. P.E., Wentworth Institute of Technology
AC 2012-4827: REVAMPING DELTA DESIGN FOR INTRODUCTORY ME-CHANICSMs. Michelle Marie Grau, Stanford Univeristy Michelle Grau is a junior in mechanical engineering at Stanford University, and was one of the students in the first revision of ENGR 14, Introduction to Solid Mechanics. Her research interests include engineering education, robotics in space applications, and using robots to introduce engineering to middle school students. She is passionate about the FIRST Robotics program, in which she coaches teams and volunteers at competitions. She also does wushu and gymnastics.Dr. Sheri Sheppard, Stanford University Sheri Sheppard, Ph.D., P.E., is professor of mechanical engineering at Stanford University. Besides
Paper ID #25644Affordable learning solutions and interactive content in engineering mechan-icsDr. Nicolas Ali Libre, Missouri University of Science & Technology Nicolas Ali Libre, PhD, is an assistant teaching professor of Civil Engineering in Missouri University of Science and Technology.He received his B.S. (2001), M.S. (2003) and Ph.D. (2009) in civil engineering with emphasis in structural engineering, all from the University of Tehran, Iran. His research interests and experience are in the field of computational mechanics, applied mathematics and cement-based composite materials. During his post-doc in the
AC 2012-3375: WORK-IN-PROGRESS: INITIAL INVESTIGATION INTOTHE EFFECT OF HOMEWORK SOLUTION MEDIA ON FUNDAMEN-TAL STATICS COMPREHENSIONDr. Sean Moseley, Rose-Hulman Institute of Technology Sean Moseley is Assistant Professor of mechanical engineering.Ms. Shannon M. Sexton, Rose-Hulman Institute of Technology Page 25.1491.1 c American Society for Engineering Education, 2012 Work In Progress: Initial Investigation into the Effect of Homework Solution Media on Fundamental Statics ComprehensionIntroduction Solutions to homework assignments are provided in many
Paper ID #22338Efforts to Improve Free Body DiagramsMs. Kate N. Leipold, Rochester Institute of Technology Ms. Kate Leipold has a M.S. in Mechanical Engineering from Rochester Institute of Technology. She holds a Bachelor of Science degree in Mechanical Engineering from Rochester Institute of Technology. She is currently lecturer of Mechanical Engineering at the Rochester Institute of Technology. She teaches graphics and design classes in Mechanical Engineering, as well as consulting with students and faculty on 3D solid modeling questions. Ms. Leipold’s area of expertise is the new product development process. Ms
Paper ID #30515Implementation and Evaluation of Active Learning Techniques: AdaptableActivities for A Variety of Engineering CoursesDr. Jillian Schmidt, Missouri University of Science and Technology Dr. Jillian Schmidt is an Assistant Teaching Professor in the Department of Mechanical and Aerospace Engineering at Missouri University of Science and Technology. She teaches primarily first and second- year engineering design courses, and her research interests include technology incorporation and team dynamics in project based courses.Dr. Nicolas Ali Libre, Missouri University of Science and Technology Nicolas Ali Libre, PhD
Paper ID #33471The Affordance of Computer-Supportive Collaborative Learning in aDynamics CourseDr. Yonghee Lee, Purdue University at West Lafayette Postdoctoral Associate at Purdue UniversityProf. Jennifer DeBoer, Purdue University at West Lafayette (COE) Jennifer DeBoer is currently Assistant Professor of Engineering Education at Purdue University. Her research focuses on international education systems, individual and social development, technology use and STEM learning, and educational environments for diverse learners.Prof. Jeffrey F. Rhoads, Purdue University at West Lafayette (COE) Jeffrey F. (Jeff) Rhoads is a
traditionally analytical courses in the Engineering Mechanics sequence. c American Society for Engineering Education, 2018 Using FEA as a Pedagogical Tool for Teaching Machine Component DesignAbstractOver the last 50 years, Machine Design textbooks have been continually updated to includeinstruction on current technology and to include the latest standards. However, currenttechnology has not been incorporated in the teaching of the material. Specifically, there is achapter in most texts that addresses basic finite element analysis (FEA) theory. However, FEA isnot used to teach the concepts of machine design. Conversely, the content of machine design isnot used to enhance
Paper ID #21271If We Can’t Model a Cantilevered Beam, What Can We Model? Helping Stu-dents Understand Errors in Vibration Experiments and AnalysesDr. Phillip Cornwell, Rose-Hulman Institute of Technology Phillip Cornwell is a Professor of Mechanical Engineering at Rose-Hulman Institute of Technology. He received his Ph.D. from Princeton University in 1989 and his present interests include structural dynamics, structural health monitoring, and undergraduate engineering education. Dr. Cornwell has received an SAE Ralph R. Teetor Educational Award in 1992, and the Dean’s Outstanding Teacher award at Rose-Hulman in 2000 and
Paper ID #34021Advancing Computational Knowledge and Skill Through Computing Projectsin Sophomore-level Mechanics CoursesProf. Keith D. Hjelmstad, Arizona State University Keith D. Hjelmstad is President’s Professor of Civil Engineering in the School of Sustainable Engineering and the Built Environment at Arizona State University.Dr. Amie Baisley, University of Florida I have a M.S. in structural engineering from Arizona State University and a Ph.D. in engineering education from Utah State University. My teaching and research interests are centered around the sophomore level courses that engineering students take and how
Paper ID #21147Analysis of Basic Video Metrics in a Flipped Statics CourseBenjamin Keith Morris, The University of Georgia Benjamin Morris is a senior at The University of Georgia with a major in Mechanical Engineering.Dr. Siddharth Savadatti, University of Georgia Dr. Siddharth Savadatti received his PhD in Computational Mechanics from North Carolina State Univer- sity in 2011 and has since been on the faculty of the College of Engineering at the University of Georgia. He teaches mechanics and numerical methods courses such as Statics, Fluid Mechanics, Programming, Numerical Methods for Engineers and Finite Element
Paper ID #21653Teaching Modal Analysis with Mobile DevicesDr. Charles Riley P.E., Oregon Institute of Technology Dr. Riley has been teaching mechanics concepts for over 10 years and has been honored with both the ASCE ExCEEd New Faculty Excellence in Civil Engineering Education Award (2012) and the Beer and Johnston Outstanding New Mechanics Educator Award (2013). While he teaches freshman to graduate- level courses across the civil engineering curriculum, his focus is on engineering mechanics. He im- plements classroom demonstrations at every opportunity as part of a complete instructional strategy that seeks to
2006-780: THE EFFECT TECHNOLOGY AND A STRUCTURED DESIGNPROBLEM HAS ON STUDENT ATTITUDES ABOUT THEORY IN A DYNAMICSCLASSLouis Everett, University of Texas-El Paso Louis J. Everett is a Professor of Mechanical Engineering at the University of Texas El Paso. Dr. Everett is a licensed professional engineer in the state of Texas and has research interests in the use of technology in the classroom. His technical research interests include robotics, machine design, dynamics and control systems. leverett@utep.edu http://research.utep.edu/pacelabArun Pennathur, University of Texas-El Paso Arunkumar Pennathur is Associate Professor of Industrial Engineering at the University of Texas El Paso. Dr
Paper ID #21272Should Kinetics Follow Kinematics? Investigating Course Design in Dynam-icsDr. Phillip Cornwell, Rose-Hulman Institute of Technology Phillip Cornwell is a Professor of Mechanical Engineering at Rose-Hulman Institute of Technology. He received his Ph.D. from Princeton University in 1989 and his present interests include structural dynamics, structural health monitoring, and undergraduate engineering education. Dr. Cornwell has received an SAE Ralph R. Teetor Educational Award in 1992, and the Dean’s Outstanding Teacher award at Rose-Hulman in 2000 and the Rose-Hulman Board of Trustee’s Outstanding Scholar
2006-936: SOLVING NONLINEAR GOVERNING EQUATIONS OF MOTIONUSING MATLAB AND SIMULINK IN FIRST DYNAMICS COURSEAli Mohammadzadeh, Grand Valley State University ALI R. MOHAMMADZADEH is currently assistant professor of Engineering at School of Engineering at Grand Valley State University. He received his B.S. in Mechanical Engineering from Sharif University of Technology And his M.S. and Ph.D. both in Mechanical Engineering from the University of Michigan at Ann Arbor. His research area of interest is fluid-structure interaction.Salim Haidar, Grand Valley State University SALIM M.HAIDAR is currently associate professor of Mathematics at Grand Valley State University. He received his B.S. in
2006-2156: INTEGRATING MULTI-MEDIA AIDS (TABLET-PC, STREAMINGVIDEOS, ELECTRONIC SLIDES) TO THE FUNDAMENTAL INSTRUCTION INMECHANICSRungun Nathan, Villanova University Dr. Rungun Nathan is an assistant professor in the department of mechanical engineering at Villanova University since fall 1999. He got his BS from University of Mysore, DIISc (electronic design technology) from Indian Institute of Science, MS (System Sciences) from Louisiana State University and PhD (Mechanical Engineering) from Drexel University. He worked as a post-doc at University of Pennsylvania in the area of Haptics. His research interests are in the areas of mechatronics, robotics, virtual reality and haptics, and teaching
2006-434: ANIMATION AS THE FINAL STEP IN THE DYNAMICS EXPERIENCEThomas Nordenholz, California Maritime Academy Thomas Nordenholz is an Associate Professor of Mechanical Engineering at the California Maritime Academy. He received his Ph.D. from the University of California at Berkeley in 1998. His present interests include the improvement of undergraduate engineering science instruction, and the development of laboratory experiments and software for undergraduate courses. Page 11.215.1© American Society for Engineering Education, 2006 Animation as the Final Step in the Dynamics ExperienceAbstractA
2006-671: STRUCTURED APPROACH IN TEACHING INTERMEDIATEMECHANICS OF MATERIALSMadhukar Vable, Michigan Technological University Page 11.1154.1© American Society for Engineering Education, 2006Page 11.1154.2Page 11.1154.3Page 11.1154.4Page 11.1154.5Page 11.1154.6Page 11.1154.7Page 11.1154.8Page 11.1154.9Page 11.1154.10Page 11.1154.11Page 11.1154.12Page 11.1154.13
ongoing process. ‘MOM in Action’ is one teaching aid in the educational tool kit thatincorporates insights on human learning to improve the impact of instruction. Can the impact ofusing ‘MOM in Action’ be measured? To answer this we must ask what it means to have a BS inthe fast changing technological society. Does engineering education transcend the simple sum ofall the course content? Would time spend in incorporating ‘MOM in Action’ in textbooks and lec-tures be better spent in solving another numerical example or covering an extra topic? The authorsbelieve that education and neuroscience research suggests that ‘MOM in Action’ course enrich-ment might have a positive impact on student learning and retention of concepts.The authors also