the utilization of hands-on pedagogy as a means toenhance peer learning collaboration and curiosity among chemistry undergraduate students. Theresearch seeks to instill confidence and competence in students' grasp of fundamental chemicalprinciples, collaborative skills, and problem-solving abilities, while also nurturing their curiositythrough the integration of active learning techniques, laboratory experiments, and interactiveteaching methodologies. The study discusses an examination of the impact of hands-onpedagogy on students' peer learning collaboration and curiosity. The study was carried outamong undergraduate students taking foundations in chemistry, which includes engineering andother STEM majors. The study adopted a pre-post-test
), AISC (American Institute of SteelConstruction) and/or ISO (International Organization for Standardization) standards are usedextensively for these purposes. However, the significance of standards may not be immediatelyapparent to students in a classroom or laboratory setting. Generally, in laboratory courses,students are asked to follow a given set of procedures without understanding the criteria ormethod by which the procedures were selected. Similarly, mechanical or structural designcourses emphasize code requirements without providing a comprehensive picture of thedevelopment of codes and the relationship to core mechanics of materials concepts. Thispresentation leads to students who can perform calculations without understanding why. Hence
Point he has continued his research on unmanned systems under ARL’s Campaign for Maneuver as the Associate Director of Special Programs. Throughout his career he has continued to teach at a variety of colleges and universities. For the last 4 years he has been a part time instructor and collaborator with researchers at the University of Maryland Baltimore County (http://me.umbc.edu/directory/). He is currently an Assistant Professor at York College PA.Dr. Stephen Andrew Gadsden, McMaster University Dr. S. Andrew Gadsden is an Associate Professor in the Department of Mechanical Engineering at Mc- Master University and is Director of the Intelligent and Cognitive Engineering (ICE) Laboratory. His research area includes
Polytechnic Institute and State University. In 1987 he joined the Department Electrical and Computer Engineering at UMASS Lowell as its Analog Devices Career Development Professor. Dr. Thompson has served on the executive boards of the Cooperative Research Fellowship program of Bell Laboratories (1991-1999) and the AT&T Labs Fellowship Program (1996-2006). At Bell Laboratories Dr. Thompson created with the Vice President of Research and Nobel laureate, Arno Penizas, the W. Lincoln Hawkins Mentoring Excellence Award (1994). This award is given to a member of the research staff for fostering the career growth of Bell Labs students and associates. This award is ResearchAˆ¨ os highest honor for mentoring contributions. In
-lish laboratories and curricula that are not only in sync with current industry requirements butare also adaptive enough to accommodate future advancements.Adoption and implementation of the presented tools will ensure that the next generation ofSTEM workers displays a blend of technical skills, soft skills, and digital capabilities neededdue to rapid technological advancements and constantly changing work environments of thesemiconductor industry.INTRODUCTIONThe teaching-learning landscape has undergone swift changes, spurred by the pandemic, lead-ing to the rise of virtual learning, new semiconductor global initiatives, and the advent of Indus-try 5.0. As Stuchlikova [13] predicts, knowledge gained during a degree may become outdatedby the
Paper ID #43749Student-led Multi-Disciplinary Approach for the Design of Experiments inEngineering: A MethodologyMr. Osama Desouky, Texas A&M University at Qatar Osama Desouky is a Technical Laboratory coordinator at Texas A&M University in Qatar. Osama is currently pursuing his Ph.D. in interdisciplinary engineering from Texas A&M University at College Station. He is responsible for assisting with experimental method courses, 3D printing, mechanics of materials, material science, senior design projects, and advanced materials classes. Osama’s professional interests include manufacturing technology, materials
, Northwestern State University, and Franklin University. Dr. Bachnak received his B.S., M.S., and Ph.D. degrees in Electrical Engineering from Ohio University. His experience includes several fellow- ships with NASA and the US Navy Laboratories and employment with Koch Industries. Dr. Bachnak is a registered Professional Engineer in the State of Texas, a senior member of IEEE and ISA, and a member of ASEE. ©American Society for Engineering Education, 2023 Engineering and Engineering Technology Capstone Design Teams Lead to Successful ProjectsAbstract- The electrical engineering (EE) and electrical engineering technology (EET) programsat Penn State Harrisburg have two
expertise and interests include process dynamics and control, fuel cell systems and thermal fluid engineering education. He has taught courses in system dynamics and control, process control, energy conversion, and thermal fluids laboratory. ©American Society for Engineering Education, 2024 Incorporating Sustainability into Engineering Curricula Through Project-Based Learning (PBL) Aaditya Khanal1, Prabha Sundaravadivel2 and Mohammad Rafe Biswas3 Jasper Department of Chemical Engineering1 Department of Electrical and Computer Engineering2 Department of Mechanical Engineering3 The University
Engineering at Rose- Hulman Institute of Technology. She is the director of the multidisciplinary minor in robotics and co- director of the Rose building undergraduate diversDr. James A. Mynderse, Lawrence Technological University James A. Mynderse, PhD is an Associate Professor in the A. Leon Linton Department of Mechanical, Robotics, and Industrial Engineering at Lawrence Technological University. He serves as director for the BS in Robotics Engineering and MS in Mechatronics and Robotics Engineering programs.Dr. Vikram Kapila, New York University Vikram Kapila is a Professor of Mechanical and Aerospace Engineering. He directs a Mechatronics, Con- trols, and Robotics Laboratory and has held visiting positions with the
a previous robotics course, and the earliercourse module on image processing. MATLAB also presents a more shallow learning curve, isinteractive, and supports prototyping and visualization. MATLAB fully supports CV and DLwith the Computer Vision Toolbox and Deep Learning Toolbox. Another constraint was therequired use of low-cost hardware and limited laboratory resources. As mentioned, all thenetwork training was used with standard laptops with CPUs and minimal GPU support. Nospecialized GPU hardware was required.Student projects focused on computer vision applications in robotics and manufacturing such asvisual defect analysis involved identifying good/broken cookies on a conveyor belt, missing ormisaligned bottle caps on small bottles
(Transportation) and Masters of City & Regional Planning. She completed a B.S. Management Studies, at the University of the West Indies (Mona), Jamaica.Dr. Kofi Nyarko, Morgan State University Dr. Kofi Nyarko is a Tenured Associate Professor in the Department of Electrical and Computer Engi- neering at Morgan State University. He also serves as Director of the Engineering Visualization Research Laboratory (EVRL). Under his direction, EVRL has acquired and conducted research, in excess of $12M, funded from the Department of Defense, Department of Energy, Army Research Laboratory, NASA and Department of Homeland Security along with other funding from Purdue University’s Visual Analytics for Command, Control, and
Professor. Dr. Thompson has served on the executive boards of the Cooperative Research Fellowship program of Bell Laboratories (1991-1999) and the AT&T Labs Fellowship Program (1996-2006). At Bell Laboratories Dr. Thompson created with the Vice President of Research and Nobel laureate, Arno Penizas, the W. Lincoln Hawkins Mentoring Excellence Award (1994). This award is given to a member of the research staff for fostering the career growth of Bell Labs students and associates. This award is ResearchAˆ¨ os highest honor for mentoring contributions. In 1998, AT&T Labs instituted a similar award named for Dr. Thompson. Charles Thompson is Professor of Electrical and Computer Engineering, Director of the Center
educational laboratories. ▪ Personalized Education o A satellite campus is typically unique in providing small-class sizes, a true collaborative learning environment, and an opportunity for personalized education for students. The class and campus environment creates an opportunity for faculty to engage in academic activities that can lead to developing professional relationships with students. The small class sizes allow the faculty to know their students on a more personal basis, which can lead to increasing the motivation of students. Meyer [12] conducted a literature review and survey and discovered that departments offering small class-sizes
-Based Learning (RBL)” throughout the entirety of a four-year course.This is in contrast to the conventional model, which is well known for including RBL solelyin the final year of the graduation thesis project (see figure 1 below). The program begins tointroduce students to laboratory research from their first year, while providing an environment that enables them to pursue cutting-edge research, doing so directly underthe guidance of a supervisor, advisers, and graduate students. To ensure students gain the deep understanding needed for advanced research whileengaged in RBL, they will also study foundational natural science courses, requiredspecialized subjects, and other disciplines. We also encourage students to take Liberal
of technology (learning management systems, online meetingsoftware, team management software, online polling/feedback software, and e-portfolios). Onthe same scale, participants were also asked to range their changes in content delivery includingasynchronous online content, synchronous online content, hyflex (in person and remote studentssimultaneously), and hybrid (mix of online and face-to-face). Participants were asked aboutchanges in teaching practice including the use of active learning, flipped classroom, physicallaboratory activities, and virtual laboratory activities. They were also asked, on the same slidingscale, if they had changed their availability outside the classroom, flexibility of deadlines,statements and accommodations for
analysis and decision-making processes. In the realm of design, he has actively engaged in product design and computer-aided design projects, including participation in the Shell Eco-Marathon. Each of these areas reflects Rackan’s versatility and dedication to mastering diverse aspects of modern engineering.Osama Desouky, Texas A&M University at Qatar Osama Desouky is a Technical Laboratory coordinator at Texas A&M University in Qatar. Osama is currently pursuing his Ph.D. in interdisciplinary engineering from Texas A&M University at College Station. He is responsible for assisting with experimental method courses, 3D printing, mechanics of materials, material science, senior design projects, and advanced
virtual and real autonomous robots in a teaching laboratory,” in 2016 IEEE Global En- gineering Education Conference (EDUCON), 2016, pp. 621–630. [6] T. Tsoy, L. Sabirova, R. Lavrenov, and E. Magid, “Master program students experiences in robot operating system course,” in 2018 11th International Conference on Develop- ments in eSystems Engineering (DeSE), 2018, pp. 186–191. [7] L. Joseph and J. Cacace, Mastering ROS for Robotics Programming: Best practices and troubleshooting solutions when working with ROS, 2021. [8] J. Gr¨onman, M. Saarivirta, T. Aaltonen, and T. Kerminen, “Review of artificial intelli- gence applications in the ros ecosystem,” in 2021 44th International Convention on In- formation, Communication and
digital infrastructure,synchronous CSCL-scenarios eliminate spatial distance between collaborators [9]. This allows toestablish joint courses between departments or universities or to involve lecturers or experts fromindustry, regardless of their location while reducing travel expense to a minimum [9]. Similarly,this approach expands the application of modern methods for distance learning in engineering,such as remote laboratories [9].According Theory of Media Synchronicity (TMS) [10], the key to effective use of media (rangingfrom FTF to various ICT) is to match its capabilities to the group task to be executed. For this,TMS distinguishes capabilities of a specific media with the five factors (1) immediacy offeedback, (2) parallelism, (3) symbol
laboratory withcomputers, during the Adaptation and Integration of Newcomers class, after an explanation ofthe research objectives, confidentiality of results, and clarification of voluntary participation.Procedure for analyzing the results The aim was to characterize the sample, describe the self-efficacy results obtained andrelate the variables age, self-efficacy (and its dimensions), and school performance, as well asthe period attended (daytime and nighttime), gender (female and male), and enrollment status(enrolled and dropouts until the end of the school year). The data were analyzed usingdescriptive statistics, multiple comparisons tests, Spearman correlation, and linear regressionmodels.ResultsSelf-efficacy in higher education
Lawrence National Laboratory focusing on com- putational analysis for nonlinear seismic analysis of Department of Energy nuclear facilities and systems. After joining SFSU in 2016, she established an active research lab at SFSU with a diverse group of under- graduate and Master’s level students. For her engineering education research, she is interested in exploring how to use technology such as virtual reality and 3D printing to enhance student engagement. She is an active member of ASCE, ASEE, and SEAONC.Dr. Zhaoshuo Jiang, San Francisco State University Zhaoshuo Jiang graduated from the University of Connecticut with a Ph.D. degree in Civil Engineer- ing. Before joining San Francisco State University as an assistant
Development. Specialties: Engineering and Technology Education, Instructional Design, STEM Curriculum Development, Digital/Online EducationDr. Gregory L Long PhD, Massachusetts Institute of Technology Gregory L. Long, PhD is currently the Lead Laboratory Instructor for NEET’s Autonomous Machines thread at the Massachusetts Institute of Technology. He has a broad range of engineering design, prototype fabrication, woodworking, and manufacturing experiDr. M. Mehdi SalekDr. Amitava ’Babi’ Mitra, Massachusetts Institute of Technology Amitava ’Babi’ Mitra, Ph.D. enjoys visioning, designing, setting up and operationalizing innovative ’start-up’ educational initiatives and has over thirty years’ experience in institution and
Center for Leadership Education within Johns Hopkins University’s Whiting School of Engineering. He obtained his bachelor’s and master’s degrees in electrical engineering and his PhD in history of science from Johns Hopkins University. As an engineer at JHU’s Applied Physics Laboratory, Hearty built radio communications hardware for NASA’s Parker Solar Probe. As an historian, he has studied collaborations across disciplines of engineering and applied science since the 1930s. His doctoral dissertation analyzed the rise and development of water quality management, a multidisciplinary field of applied science, from the New Deal to the Clean Water Act. ©American Society for Engineering Education
an introduction to the one-semester study abroad programs and laboratory internship options at our institution.3. For overseas participants to gain an understanding of Japanese culture and its unique impact on the field of robotics.4. For Japanese students to learn more about their own culture and history.The MGUDS-S Since the 2019 academic year, the MGUDS-S tool has been the standard method used atSIT to evaluate all the online study abroad programs conducted at our institution. It wascreated by Prof. Marie Miville at Columbia University in the United States [1], [2], with aJapanese version later being developed by Oda et al [3]. It consists of a 15-question writtensurvey, with responses scored on a 6-point Likert scale. The MGUDS-S
Paper ID #37271Designing Learning Experiences with a Low-Cost Robotic ArmProf. Eric Markvicka, University of Nebraska-Lincoln Dr. Eric Markvicka is an Assistant Professor in the Department of Mechanical and Materials Engineering at the University of Nebraska-Lincoln (UNL). There, he also holds a courtesy appointment in the De- partment of Electrical and Computer Engineering and the School of Computing. At UNL Dr. Markvicka directs the Smart Materials and Robotics Laboratory, an interdisciplinary research lab that is creating the next generation of wearable electronics and robotics that are primarily composed of
students have when selecting courses can vary widely.For example, a student may have the option to select among three versions of a statistics courseor multiple versions of a thermodynamics course. These course options may differ in focus (e.g.,a general math statistics course versus a statistics offered in mechanical engineering) or teachingstyle (a lecture-based thermodynamics course versus a course that also includes a laboratory). Insome cases students may be offered greater choices to select from a menu with different courses(e.g., select a course that satisfies a history requirement) or have a much more open choice suchas a technical elective. Free electives give students complete autonomy to select any collegecourse of interest, and may be
focus on tissue engineering and peripheral nerve regeneration. At WSU, she taught BE 1300 (”Materials Science for Engineering Ap- plications”) and BME 1910/20/25 (”Biomedical Engineering Design Laboratory”). Melissa also holds a Bachelor’s in Materials Science & Engineering from the University of Michigan and loves being back and teaching at her alma mater! ©American Society for Engineering Education, 2023 Work-in-Progress: KLIQED, A Feedback Tool for Fostering Peer Engagement during Student Oral PresentationsAbstractOral communication skills are important in all academic disciplines (e.g. liberalarts, science, and engineering) and hiring decisions. In
major [4]-[18]. For example, Alpár et al. performed a qualitativeanalysis of a cohort of computer science students’ responses to assess these students’ perceptionsof mathematics and to investigate if mathematics can be a bottleneck to learning in computerscience [5]. Students generally perceived mathematics background as significant and relevant(and transferrable) to software engineering, algorithm analysis, logical thinking and continuouslearning in computer science. Ayyagari discusses the significance of math in the control systems education in selectedinstitutions of higher education in India, and the importance of demonstrating theory throughpractice in laboratory experiments, since students have a general reluctance to algebra [6
Paper ID #43201Formula for Success for Interdisciplinary InitiativesDr. Paul Cameron Hungler P.Eng., Dr. Paul Hungler is an assistant professor in the Department of Chemical Engineering and Ingenuity Labs at Queenˆa C™s University. Prior to starting his current position, Major (Retired) Hungler served in the Royal Canadian Airforce. His research is now focDr. Kimia Moozeh, Queen’s University Kimia Moozeh is a research associate at Queen’s university in Engineering Education. Her PhD dissertation at University of Toronto explored improving the learning outcomes of undergraduate laboratories. Her research interests are lab
Paper ID #39317Creating Creative Educational Opportunities among Engineering and ArtsStudentsabdullah ibrahim, Texas A&M University at QatarRoudha Saif Al-Khaldi, Texas A&M University, QatarDoaa Elamin EmamDr. Yasser M. Al Hamidi, Texas A&M University, Qatar Dr. Al-Hamidi holds a Ph. D. degree in Mechatronics from the University of Bourgogne Franche-Comt´ e (UBFC), France, and currently working as the Mechanical Engineering Laboratories Manager at Texas A&M University at Qatar. He joined Texas A&M University at Qatar in 2007 coming from University of Sharjah. Dr. Al-Hamidi had been appointed as a visiting