Paper ID #21411Basic Electrical Parameters Measurement Laboratory: A K-12 OutreachProjectDr. Rohit Dua, Missouri University of Science & Technology ROHIT DUA, Ph.D is an Associate Teaching Professor in the Department of Electrical and Computer En- gineering at the Missouri University of Science and Technology and Missouri State University’s Coopera- tive Engineering Program. His research interests include engineering education. (http://web.mst.edu/˜rdua/) c American Society for Engineering Education, 2018 Basic Electrical Parameters Measurement Laboratory: A K-12 Outreach
residency, fellowship and postdoctoral training at Harvard. Her research focuses on development of novel antimicrobials and polymeric delivery devices to treat infections with multi-drug resistant pathogens, as well as STEM and community outreach. c American Society for Engineering Education, 2018 Paper ID #23942Dr. Robin S.L. Fuchs-Young, Texas A&M University Dr. Fuchs-Young is a Professor in the Department of Molecular and Cellular Medicine in the College of Medicine at Texas A&M University. The scope of her laboratory research includes studies of breast can- cer health disparities and the bio
sessions aimed to help thestudents gain an understanding about the different fields of engineering that can be studied in orderto be part of the transportation workforce; that is, other engineering fields are related totransportation not only Civil Engineering.Hands-On Laboratory Experimental Sessions The goal of these sessions was to provide the students with a fun, interactive learningenvironment in which they can discover different aspects of transportation engineering. All of thehands-on sessions were designed so that the students were engaged in the session through buildingor conducting an experiment. The session related to building and testing a bottle rocket is oneexample of such activities (Table 1: Week 1, Friday). In this session
biomedical scientist in Immunology, Dr. Borges balances the world of what STEM professionals do and brings that to STEM education in order to provide PD that aligns to The Next Generation Science Standards (NGSS). Since 2008 she has provided teacher PD to science teachers in the tri-state area, including international visiting teachers and scholars. Dr. Borges’ research interests include: building STEM professional-teacher relationships, diversity and equity, and enhancing urban science teaching and learning.Dr. Vikram Kapila, New York University Vikram Kapila is a Professor of Mechanical Engineering at NYU Tandon School of Engineering (NYU Tandon), where he directs a Mechatronics, Controls, and Robotics Laboratory, a
classroom activities that meet the goals of the standards in the context ofteaching and learning science [6]. Such activities must be rigorous, coherent, and related tostudents’ lived experiences [7]. Prior work by the research team involved afterschool engineeringand science programs and summer camps that resulted in improved confidence, self-concept, andinterest in STEM-related post-secondary study and careers [8]-[11], particularly for studentsfrom traditionally underrepresented groups [12], [13]. Although there has been significant workin developing high school engineering coursework and out-of-school programs (see, forexample, Project Lead the Way [14]), more work is needed on developing engineering activitiesand laboratory experiences that
Paper ID #23445Hk Maker Lab: Creating Engineering Design Courses for High School Stu-dents (Evaluation -or- Other)Dr. Aaron Kyle, Columbia University Aaron Kyle, Ph.D., is Senior Lecturer in Biomedical Engineering at Columbia University. Dr. Kyle teaches a two semester series undergraduate laboratory course, bioinstrumentation and Senior Design. Senior Design is Dr. Kyle’s major teaching focus and he has worked diligently to continually enhance undergraduate design. He has taught or co-taught the BME Design class since January 2010. Dr. Kyle has spearheaded the incorporation of global health technologies into Senior
breakdown set thecommunity-based activities regarding environmental sustainability BCA would perform and setfeedback mechanisms to critically evaluate the learning outcomes and goals of the week’sactivities. Day 1: Day 2: Day 3: Day 4: Day 5: Welcome, Urban Internet of Green Outdoor laboratory, Biotechnology Sustainability Things Infrastructure BCA Closing ceremony Morning: Morning: Morning: Morning: Morning: Welcome, Education and Arduino Education on Experiments led by team building introduction to presentation, the benefits of nearby highly
’ knowledge in a variety of areas. Students who had just completed either the10th or 11th grade are recruited via a program web site or by contacting guidance counselors,STEM teachers, and principals. Social media was also used as a recruitment tool. Applicants areevaluated using selection criteria that include high school transcripts and an essay where studentsdescribe their reasons for wanting to attend.STEM-SEP has been held on the campus of Penn State University-Harrisburg each June since2016. The workshop sessions provide participants with active learning opportunities throughparticipation in laboratory-style experiments and team activities. Such activities have shown toimprove retention of women in engineering majors, a key feature since female
the bridge to test its functionality.Constraint • The prefabricated arch bridge should connect between two provided abutments that are placed 80 cm apart. • Your team must present the mathematical calculations for the bridge component dimensions prior to making the individual components. • Each prefabricated bridge component should be made from wood and manufactured using the equipment found in the production laboratory (i.e. band saw and jigsaw).Appendix: Design Example. 5 pieces of woodMathematical calculation 180° 𝜃= = 36° 5 2 𝐿1 = 2 × 𝑟 × 𝑠𝑖𝑛 = 2 × 40 × 𝑠𝑖𝑛18°, 𝑠𝑖𝑛18° = 0.309 𝜃 L1 = 2 × 40 × 0.309 = 24.72cm 2 L2
●! 2D & 3D Coordinate Systems ●! Systems Design ●! Laboratory Guidelines Engineering Geometry ●! Troubleshooting ●! Machine Specific Safety ●! Recognizing, Selecting, & ●! Reverse Engineering ●! Attire and Equipment Applying Appropriate GeometricEngineering Graphics Concepts & Practices ●! Engineering Drawings ●! Manipulation of Geometric ●! Dimensioning and Tolerances Equations ●! 2D CADD ●! Trigonometry
Science. She serves as faculty supervisor for the Discovery initiative and is program co-director for the Igniting Youth Curiosity in STEM Program. Dawn was a 2017 Early Career Teaching Award recipient at U of T and was named the 2016 Wighton Fellow for excellence in development and teaching of laboratory-based courses in Canadian UG engineering programs. c American Society for Engineering Education, 2018IBBME Discovery: Biomedical engineering-based iterative learning in a high school STEM curriculum (Evaluation)Davenport Huyer, L.1, Callaghan, N.I.1, Smieja, D.1*, Saab, R.1*, Effat, A. 1, Kilkenny, D.M.1Institute of Biomaterials and Biomedical Engineering, University of Toronto.*These
on applications of nanotechnology and materials scienceconcepts. Two annual events crown the intervention: a) an annual club meeting at the universitycampus, and b) a Nanodays event, where each club conducts nanotechnology demonstrations attheir own schools. Furthermore, a group of high school students and teachers is selected toparticipate in a 4-week Summer Research Program, in the Center’s laboratories. Collegeadmissions data show that 75% (N=12) of the research summer program participants and 42% ofstudents admitted from schools with MSE clubs have enrolled at UPRM, with a 94% second-year retention rate. For the schools with MSE clubs, between 49% and 75% of students whochose to major in Science, Engineering or Technology programs were
be able to: 1. Define the term research. 2. Describe examples of research being conducted in STEM fields and the potential impact of that research on society. 3. List examples of career opportunities available in various STEM fields. 4. Collect scientific data in a laboratory setting. 5. Analyze and interpret simple scientific data generated in the laboratory. 6. List and describe the steps of the scientific method. 7. List and describe the steps of the engineering design process. 8. Compare and contrast the scientific method and the engineering design process. 9. Describe the difference between quantitative and qualitative data and provide examples of situations where each is used. 10. Demonstrate
collaborative curriculum design.Consistent with NGSS, activities are framed for identifying problems and defining relatedlimitations and criteria for technological advancements. Teachers will generate and evaluate avariety of solutions to identified problems. Finally, they will optimize solutions through analysisof the value and costs associated with their designs [1]. Sample course activities are described inTable 2.Table 2Sample Course Laboratory Activities Developed by Research Team Disciplinary Ideas & Crosscutting Concepts Engineering Practices Physics and Electrical/Computer Engineering Teachers will design and construct metal detectors [19]. • DC circuits and electromagnetism Assembled devices must
received a NASA/ASEE Summer Faculty Fellowship to research NEMS/MEMS adaptive optics in the Microde- vices Laboratory at the Jet Propulsion Laboratory. Dr. Fontecchio received his Ph.D. in Physics from Brown University in 2002. He has authored more than 75 peer-reviewed publications.Mr. Richard Edward Giduck, Drexel University c American Society for Engineering Education, 2018Teaching Fundamentals in Lasers and Light Technology to Advanced Applied Optics in Biology and Biomedical Research, Analyzing the Team Teaching Influence on High School Student’ Perception of and Confidence in STEM (Work in Progress)Vahideh Abdolazimi, Jared Andrew Ruddick, Jessica S. Ward, Richard Edward
pursued a Masters degree in Science Education as well as a Master’s degree in Curriculum and Instruction in STEM Education. Jessica is a NASA Endeavor Teaching Fellow and also a graduate of Carnegie Mellon’s Robotics Academy.Miss Rasheda Likely, Drexel University Rasheda Likely received her Bachelors of Science and Masters of Science in Biology from the University of North Florida. Prior to beginning the doctoral program at Drexel University, she worked in Virology (the study of viruses) for the Florida Department of Health for three years. She has also taught ”Princi- ples of Biology” laboratory sections at University of North Florida and Physiology at Drexel University. Rasheda is currently in her second year
-curricular and experiential learning, and the equity and accessibility of education.Prof. Paul R. Chiarot, State University of New York at Binghamton Dr. Chiarot received the BASc, MASc, and PhD degrees in Mechanical Engineering from the University of Toronto and was a post doctoral research associate at the University of Rochester. He has published over twenty papers in peer-reviewed journals and conference proceedings and has one issued US patent. Dr. Chiarot joined the Department of Mechanical Engineering at the State University of New York at Binghamton in 2011 where he directs the Microfluidics and Multiphase Flow Laboratory. Dr. Chiarot was the recipient of the NSF CAREER Award in 2016
Microde- vices Laboratory at the Jet Propulsion Laboratory. Dr. Fontecchio received his Ph.D. in Physics from Brown University in 2002. He has authored more than 75 peer-reviewed publications. c American Society for Engineering Education, 2018 A Project-Based Approach to Develop Engineering Design Process Skills Among High School Students (WIP)IntroductionImplementing engineering curriculum in high school improves student learning and achievementin science, technology and mathematics, increases awareness of the contributions of engineers tosociety, and promotes student pursuits of STEM careers [1]. In a 2009 report, the Committee onK-12 Engineering Education from the National
Paper ID #22619Fundamental: A Teacher Professional Development Program in EngineeringResearch with Entrepreneurship and Industry ExperiencesMr. Sai Prasanth Krishnamoorthy, New York University Sai Prasanth Krishnamoorthy received his BSEE from Amrita University and M.S in Mechatronics from NYU Tandon School of Engineering, Brooklyn, NY. He is currently a Ph.D. student in Mechanical En- gineering at NYU Tandon School of Engineering, serving as a research assistant under NSF-funded RET Site project. He conducts research in Mechatronics, Robotics and Controls Laboratory at NYU and his research interests include automation
experience at the Indian Institute of Science, Bangalore, India. She is currently pursuing Ph.D. in Mechanical Engineering at NYU Tandon School of Engineering. She is serving as a research assistant under an NSF-funded DR K-12 re- search project to promote integration of robotics in middle school science and math education. For her doctoral research, she conducts mechatronics and robotics research in the Mechatronics, Controls, and Robotics Laboratory at NYU.Dr. Vikram Kapila, New York University Vikram Kapila is a Professor of Mechanical Engineering at NYU Tandon School of Engineering (NYU Tandon), where he directs a Mechatronics, Controls, and Robotics Laboratory, a Research Experience for Teachers Site in
develop educational materials to help K-12 students learn about the brain. c American Society for Engineering Education, 2018 “Helped me feel relevant again in the classroom”: Longitudinal Evaluation of a Research Experience for Teachers Program in Neural Engineering (Evaluation)Abstract The Research Experience for Teachers (RET) program, supported by the NationalScience Foundation, engages pre-college teachers in authentic research experiences inuniversity-based laboratories across the country. Some RET program sites engage scienceteachers in engineering research. With A Framework for K-12 Science and EngineeringEducation [1] and the Next Generation Science
, 2011.[14] V. Sampson, P. Enderle, J. Grooms & S. Witte, “Writing to learn by learning to write During the school science laboratory: Helping middle and high school students develop argumentative writing skills as they learn core ideas,” Science Education, vol. 97, issue 5, pp. 643-670, September, 2013.[15] J.P. Walker, & V. Sampson, “Learning to argue and arguing to learn: Argument-driven inquiry as a way to help undergraduate chemistry students learn how to construct arguments and engage in argumentation during a laboratory course,” Journal of Research in Science Teaching, volume 50, issue 5, pp. 561-596. May, 2013.[16] T.J. Moore, M.S. Stohlmann, H.H. Wang, K.M. Tank, & G.H. Roehrig
the students’own experiences.Research activityThe greatest change proposed and eventually implemented relates to the teaching process andhow the teacher-facilitator presents the physics concept. In the pre-existing paradigm, teachersintroduce the theory of a new concept prior to running an experiment or discussing contextualapplications of the theory. The physics laboratory objective is solely to verify or support thepresented theory. Teachers then encourage students to extrapolate implementation contextsthrough discussions that follow the lab experiment. The focus of the student lab report is ontheory, procedures, data collection and applying that data to the theoretical equations. Reportconclusions recount how well the experiment matched
provide PD that aligns to The Next Generation Science Standards (NGSS). Since 2008 she has provided teacher PD to science teachers in the tri-state area, including international visiting teachers and scholars. Dr. Borges’ research interests include: building STEM professional-teacher relationships, diversity and equity, and enhancing urban science teaching and learning.Dr. Vikram Kapila, New York University Vikram Kapila is a Professor of Mechanical Engineering at NYU Tandon School of Engineering (NYU Tandon), where he directs a Mechatronics, Controls, and Robotics Laboratory, a Research Experience for Teachers Site in Mechatronics and Entrepreneurship, a DR K-12 research project, and an ITEST re- search project
Engineering at NYU Tandon School of Engineering (NYU Tandon), where he directs a Mechatronics, Controls, and Robotics Laboratory, a Research Experience for Teachers Site in Mechatronics and Entrepreneurship, a DR K-12 research project, and an ITEST re- search project, all funded by NSF. He has held visiting positions with the Air Force Research Laboratories in Dayton, OH. His research interests include K-12 STEM education, mechatronics, robotics, and con- trol system technology. Under a Research Experience for Teachers Site, a DR K-12 project, and GK-12 Fellows programs, funded by NSF, and the Central Brooklyn STEM Initiative (CBSI), funded by six phil- anthropic foundations, he has conducted significant K-12 education
projects and problem-solving challenges, and attended otherSTEAM related activitiesThese summer programs attract high school students from the inner city of Chicago exposingthem to STEAM disciplines and careers through rigorous classes, laboratories and real lifeexperiences. At the same time the programs provide them with the full college and careerreadiness experience. The main goals of this program are to: (1) introduce students to a widevariety of STEAM fields, (2) increase student’s engineering mathematics and scienceknowledge, and (3) facilitate students to learn about different STEAM fields they might beinterested in pursuing.To assess the impact of the program, the participants took a pre and post content knowledge testthat included basic
constructionist learning principles that many believe evolved fromthe likes of shop class, technology education, and Stager’s constructivist learning laboratories,have now become a part of learning environments in schools, libraries, and museums in theUnited States. Even though dating earlier conceptually, the establishment of Maker Ed in 2012can be considered a watershed moment in the history of educational Makerspaces. Maker Ed wasfounded with the aim of transforming education through Making activities. Makerspacesmanifest constructionist principles of learning by doing by emphasizing the connection betweenthe Maker and that what is made or the artifact, accommodate individualized learning, supportstudents to feel personally connected to the activities
Educational Research Association (AERA), Association of Black Psycholo- gist (ABPsi), National Association of Multicultural Education (NAME), American Society of Engineer Education (ASEE) Council for Exceptional Children (CEC), and National Association of Black School Educators (NABSE).Dr. Michael P.J. Benfield, University of Alabama, Huntsville Dr. Michael P.J. Benfield is currently the lead of the STEM Projects Advancing Relevance and Confidence in the Classroom (SPARCC) Laboratory and a Principal Research Engineer within the Systems Manage- ment and Production (SMAP) Research Center at The University of Alabama in Huntsville (UAH). He holds a Ph.D. in Industrial and Systems Engineering and Engineering Management, a