Paper ID #21411Basic Electrical Parameters Measurement Laboratory: A K-12 OutreachProjectDr. Rohit Dua, Missouri University of Science & Technology ROHIT DUA, Ph.D is an Associate Teaching Professor in the Department of Electrical and Computer En- gineering at the Missouri University of Science and Technology and Missouri State University’s Coopera- tive Engineering Program. His research interests include engineering education. (http://web.mst.edu/˜rdua/) c American Society for Engineering Education, 2018 Basic Electrical Parameters Measurement Laboratory: A K-12 Outreach
Paper ID #23657”But, What Do You Want Me to Teach?”: Best Practices for Teaching in Ed-ucational Makerspaces (RTP)Miss Avneet Hira, Purdue University, West Lafayette Avneet is a doctoral student in the School of Engineering Education at Purdue University. Her research interests include K-12 education and first year engineering in the light of the engineering design process, and inclusion of digital fabrication labs into classrooms. Her current work at the FACE lab is on the use of classroom Makerspaces for an interest-based framework of engineering design. She is also interested in cross-cultural work in engineering
Paper ID #34912Adapting Soft Robotics Outreach to Teacher-Delivered Curriculum in theVirtual Classroom (Work in Progress)Ms. Sapna Shah, Harvard UniversityMr. Alex Beaudette, Harvard UniversityMr. David R. Bergandine, University of Illinois Laboratory High School Chemistry Teacher University Laboratory High School 1984 - 2021Savindi N. Devmal , University of Illinois Laboratory High School Savindi Devmal is a student at the University Laboratory High School in Urbana, IL. Savindi’s interests include bioengineering and soft robotics, and she is the recipient of the Barbara Lazarus award to develop bioprinters for soft
educators from schools with higher needs, suchas larger number of at-risk students or higher drop-out rates. After completing safety training and receiving basic information about lithography,laboratory tools’ use and scientific background of their projects, teachers start their research asmembers of a faculty research group, mentored by a trained graduate student. At the end of theprogram, teachers are expected to prepare and present a scientific poster to summarize theirresearch and a lesson plan that will be implemented during the following school year and submittedto the website Teach Engineering [22]. The lesson plan presentation always registers highattendance from NASCENT faculty and staff, administrators and teachers from the school
for whom this program would betransformative in their personal lives and academic careers. These students are generallyidentified early in high school (if not in middle school) as high-potential scholars for whomaccess to opportunities like this STEM program are not common in their own school orcommunity centers. Effectively, the academic and social characteristics of each section aredesigned through this admissions process.Section instructors are asked to recruit teaching assistants for their projects with a target of oneTA per 4-5 high school students where classes ranges in size between 16 and 25. This class sizeis dependent on room size and/or laboratory capacity. These TA’s are drawn almost entirelyfrom the undergraduate engineering
University (NYU), NY, USA. His research and teaching interests in- clude robotics, mechatronics, control systems, electro-mechanical design, human factors/ergonomics, en- gineering psychology, virtual reality, artificial intelligence, computer vision, biomimetics and biomechan- ics with applications to industrial manipulation and manufacturing, healthcare and rehabilitation, social services, unmanned autonomous vehicle (aerial and ground, indoor and outdoor) systems and STEM education.Mrs. Veena Jayasree Krishnan, New York University Veena Jayasree Krishnan received a Master of Technology (M. Tech.) degree in Mechatronics from Vel- lore Institute of Technology, Vellore, India in 2012. She has two years of research
, 2011.[14] V. Sampson, P. Enderle, J. Grooms & S. Witte, “Writing to learn by learning to write During the school science laboratory: Helping middle and high school students develop argumentative writing skills as they learn core ideas,” Science Education, vol. 97, issue 5, pp. 643-670, September, 2013.[15] J.P. Walker, & V. Sampson, “Learning to argue and arguing to learn: Argument-driven inquiry as a way to help undergraduate chemistry students learn how to construct arguments and engage in argumentation during a laboratory course,” Journal of Research in Science Teaching, volume 50, issue 5, pp. 561-596. May, 2013.[16] T.J. Moore, M.S. Stohlmann, H.H. Wang, K.M. Tank, & G.H. Roehrig
survey conducted using the “VR game development” keywords yielded 120 ASEEconference publications over the years including subjects such as VR centered project-basedlearning, system usability scale for Oculus Rift and Samsung Gear equipment, use of VR inSTEM e-learning, teaching drilling trajectory concepts, virtual laboratories for solar powertechnology. Architectural design education, engineering technology, graphics modeling andanimation courses were some of the application areas found. The following section list a few ofthe VR publications with a game content built in. A group of authors from foreign and USuniversities developed a VR game for GIS learning environment [3]. The authors focused on theownership content, stimulation of lateral
. Borges is treasurer and co-chair of the Northeastern Association for Science Teacher Education (NE-ASTE) where faculty, researchers, and educators inform STEM teaching and learning and inform policy.Dr. Vikram Kapila, NYU Tandon School of Engineering Vikram Kapila is a Professor of Mechanical Engineering at NYU Tandon School of Engineering (NYU Tandon), where he directs a Mechatronics, Controls, and Robotics Laboratory, a Research Experience for Teachers Site in Mechatronics and Entrepreneurship, a DR K-12 research project, and an ITEST re- search project, all funded by NSF. He has held visiting positions with the Air Force Research Laboratories in Dayton, OH. His research interests include K-12 STEM education
received a NASA/ASEE Summer Faculty Fellowship to research NEMS/MEMS adaptive optics in the Microde- vices Laboratory at the Jet Propulsion Laboratory. Dr. Fontecchio received his Ph.D. in Physics from Brown University in 2002. He has authored more than 75 peer-reviewed publications.Mr. Richard Edward Giduck, Drexel University c American Society for Engineering Education, 2018Teaching Fundamentals in Lasers and Light Technology to Advanced Applied Optics in Biology and Biomedical Research, Analyzing the Team Teaching Influence on High School Student’ Perception of and Confidence in STEM (Work in Progress)Vahideh Abdolazimi, Jared Andrew Ruddick, Jessica S. Ward, Richard Edward
study of real-world phenomena through hands-on, laboratory activities to develop a deepunderstanding of the material world. (8) Focusing on core science ideas, crosscutting concepts,and practices—teachers’ lessons integrate the core science or engineering ideas, SEPs, andconcepts within and across disciplines, which is consistent with the interdisciplinary nature ofscience represented through the concept of “crosscutting ideas” in the NGSS [2] and Framework[3]. (9) Building classroom community—teachers nurture a collaborative learning community inwhich students feel encouraged to voice their ideas and seek clarifications. Table 1: Ten science teaching practices ([9], pp. 7-8). Reform-oriented science teaching practice
time programs, she believes that they complement any teaching style thereby reach- ing all learning styles. She earned her doctorate in Mechanical Engineering from North Carolina State University specializing in thermal sciences where her dissertation research spanned three colleges and focused on Engineering Education. Her passions include but are not limited to Engineering Education, Energy Engineering and Conservation, and K-20 STEM Outreach. Prior to matriculating at NCSU, she worked at the North Carolina Solar Center developing a passion for wind and solar energy research while learning renewable energy policy. She combined these passions with K-20 STEM Outreach while a Na- tional Science Foundation Fellow with
Paper ID #23190Fundamental: Examining the Variations in the TPACK Framework for Teach-ing Robotics-aided STEM Lessons of Varying DifficultyMr. Abhidipta Mallik, New York University Abhidipta Mallik received his B.Tech. degree in Electronics and Communication Engineering from the West Bengal University of Technology, Kolkata, India, and M.Tech. degree in Mechatronics from the Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, India. He has one year and ten months of research experience at the CSIR-CMERI, India. He is currently a Ph.D. student in Mechanical Engineering at NYU Tandon School of
the students’own experiences.Research activityThe greatest change proposed and eventually implemented relates to the teaching process andhow the teacher-facilitator presents the physics concept. In the pre-existing paradigm, teachersintroduce the theory of a new concept prior to running an experiment or discussing contextualapplications of the theory. The physics laboratory objective is solely to verify or support thepresented theory. Teachers then encourage students to extrapolate implementation contextsthrough discussions that follow the lab experiment. The focus of the student lab report is ontheory, procedures, data collection and applying that data to the theoretical equations. Reportconclusions recount how well the experiment matched
goals to investigate the efficacy of the stratified nature of eachteam—with participant expertise ranging from student to instructor, and education toengineering—on research and curriculum development. Additionally, we investigated the impactof the summer program on efficacy and attitudes toward teaching STEM. This paper reports onthe products produced by teams during the program, and program outcomes based on thequantitative, and preliminary qualitative, results of our investigations.2. The NSF RET ProgramThe NSR RET program focuses on creating opportunities for K-12 and community college facultyto engage in research in laboratory settings predominately on university campuses. Built on thesame framework as NSF’s successful Research Experience
engineering, incorporating laboratory experiences into traditional coursework, and bringing awareness of electrochemical engineering to chemical engineers. Biddinger’s research involves applications of green chemistry and energy utilizing electrocatalysis, batteries, and novel solvents. c American Society for Engineering Education, 2019 Program evaluation of a high school summer bridge program in chemistry and engineeringAbstractIn this paper we evaluate a summer college preparatory program for New York City high schoolstudents housed at Bronx Community College. The program was titled “Introduction to EnergyTechnology” and it focused on teaching chemistry and engineering
minority high school and college students report STEM-pipeline sustaining gains after participating in the Loma Linda University summer health disparities research program. PLoS ONE vol. 9, no.9, e108497, 2017.[9] B. Yalvac, A. Ketsetzi, A., X. Peng, S. Cui, L. Li, Y. Zhang, D. Eseryel, T. F. Eyupoglu, and T. Yuan, “Cultivating evidence-based pedagogies in STEM education,” Proceedings of the American Society for Engineering Education (ASEE) Annual Conference and Exposition, Columbus, OH, June 2017.[10] B. Yalvac, H. D. Smith, P. Hirsch, and G. Birol, “Teaching writing in a laboratory-based engineering course with a “How People Learn” framework,” New Directions for Teaching and Learning, vol. 108, pp
Paper ID #30964University-Designed Middle School Science Experiences Aligned with NGSSMrs. Zahraa Stuart, Stony Brook University Zahraa Stuart received Bachelor of Engineering in electrical engineering from Stony Brook University in 2016.In 2017, she joined the PhD program in Electrical engineering statistical signal processing. Zahraa design, develop and instruct engineering teaching laboratories for both high school and middle school students and teaches since 2016.Dr. Angela M Kelly, Stony Brook University Angela M. Kelly is an Associate Professor of Physics and the Associate Director of the Science Education
University and was elected to Sigma Xi. Her research was conducted at the Argonne and Oak Ridge National Laboratories. She received bachelor’s degrees in Biomedical Engineering and Mechanical Engineering from Vanderbilt University. She holds three US patents. American c Society for Engineering Education, 2021 An Engineering Design Approach to Study and Strengthen a Teacher Preparation Program in STEM at the Secondary Level (Work in Progress)Introduction A study about the Teacher Preparation Program (TPP) at Worcester Polytechnic Institute(WPI) was conducted to examine the barriers of its graduates from entering the classroom
engineering pedagogical content knowledge and engineering engagement, whichled to an overall increase in teaching engineering self-efficacy [19]. Other studies have alsofound that the integration of robotics projects into various disciplines increased the involvedteachers’ self-efficacy around the use of robotics into middle school curriculum [20]. Immersingteachers in laboratory settings and research experiences has also been effective at increasing highschool teachers’ self-efficacy in content areas such as nanotechnology [21], as well as shiftingtheir perceptions of engineering as a field [22]. These examples of professional developmentactivities embody the five principles of professional development and ultimately demonstratedthe effectiveness of
Paper ID #22408University-based Engineering Training of High School Science Teachers toImplement the Next Generation Science Standards (Work in progress)Mrs. Kimberly Christian, Stony Brook University Kimberly is currently pursuing a PhD in Science Education at Stony Brook University. Her research focuses on the effects of professional development in engineering education on science teachers’ attitudes towards the use of engineering principles in their science courses. Kimberly teaches biology at Smithtown High School East in Saint James, NY.Dr. Angela M Kelly Angela M. Kelly is an Associate Professor of Physics and the
, Undergraduate Programs (IBBME) and the Associate Chair, Foundation Years (Division of Engineering Science), she is currently the faculty advisor for the Discovery Educational Program. Dawn is a recipient of the 2017 U of T Early Career Teaching Award and was named the 2016 Wighton Fellow for excellence in development and teaching of laboratory-based courses in Canadian UG engineering programs. American c Society for Engineering Education, 2021 Discovery: Transition of an inquiry-focused learning program to a virtual platform during the COVID-19 pandemic (Evaluation)AbstractThe shift to distance learning in response to the COVID-19 pandemic has presented teachers
]. Applicants were required to submit a CV,letter of recommendation, a sample curriculum, and statement of interest with theirapplication. In addition, interested teachers selected their preference for research laboratories asthey aligned with their interests. Teachers were chosen on the strength of their application withconsideration given to type (neighborhood, magnet, selective enrollment), geographic diversity,and student demographic of the school in which they teach. BEST Teacher Fellows each receive$7,500 stipend and $1,000 allotment for classroom materials to implement their bioengineeringcurriculum at the end of this full-time six-week program. In addition, Fellows receive anadditional $500 following the completion of a post-curriculum
Professor (Lecturing) in the Chemical Engineering Department of the University of Utah. He received his B. S. and Ph. D. from the University of Utah and a M. S. from the University of California, San Diego. His teaching responsibilities include the senior unit operations laboratory and freshman design laboratory. His research interests focus on undergraduate education, targeted drug delivery, photobioreactor design, and instrumentation.Prof. Jason Wiese, Jason Wiese is an Assistant Professor in the School of Computing at the University of Utah. His research takes a user-centric perspective of personal data, focusing on how that data is collected, interpreted, and used in applications. His work crosses the domains of
Associate Professor in the Department of Engineering Management and Systems Engi- neering at Old Dominion University, Norfolk, VA, USA. Her main areas of research interest are collabo- rative work-structures, virtual teams, and team decision-making and performance.Dr. Jennifer Jill Kidd, Old Dominion University Dr. Jennifer Kidd is a Master Lecturer in the Department of Teaching and Learning at Old Dominion Uni- versity. Her research interests include engineering education, computational thinking, student-authored digital content, and classroom assessment, especially peer review. She currently has support from the National Science Foundation for two projects related to engineering education for preservice teachers.Dr
biomedical scientist in Immunology, Dr. Borges balances the world of what STEM professionals do and brings that to STEM education in order to provide PD that aligns to The Next Generation Science Standards (NGSS). Since 2008 she has provided teacher PD to science teachers in the tri-state area, including international visiting teachers and scholars. Dr. Borges’ research interests include: building STEM professional-teacher relationships, diversity and equity, and enhancing urban science teaching and learning.Dr. Vikram Kapila, New York University Vikram Kapila is a Professor of Mechanical Engineering at NYU Tandon School of Engineering (NYU Tandon), where he directs a Mechatronics, Controls, and Robotics Laboratory, a
Paper ID #22383Pre-college Electrical Engineering Outreach: The Design of a Home SecuritySystem (Evaluation)Mrs. Zahraa Nayef Krayem, Stony Brook UniversityDr. Angela M. Kelly, Stony Brook University Angela M. Kelly is an Associate Professor of Physics and the Associate Director of the Science Education Program at Stony Brook University, New York. She attended La Salle University, Philadelphia, Pennsyl- vania, where she received her B.A. degree in chemistry, and completed her M.A. and Ph.D. degrees in science education (2000 and 2006, respectively) and her Ed.M. degree in curriculum and teaching (2007) at Teachers
mechanics, and served as the Chair for the Women in Science and Engineering Committee. Meera joined the University of Calgary in 2015.Prof. Qiao Sun, University of Calgary Qiao Sun is a professor in the Department of Mechanical and Manufacturing Engineering at the University of Calgary. She is also the Associate Dean (Diversity and Equity, Teaching and Learning) at the Schulich School of Engineering. She obtained her BSc in Power Machinery Engineering and MSc in Mechanical Engineering from Shanghai Jiao Tong University in 1982 and 1986 respectively, and PhD in Mechanical Engineering from the University of Victoria in 1996. She has taught engineering courses such as engineer- ing mechanics, numerical analysis, control
Paper ID #21576Evaluation of the 2017 National Summer Transportation Institute Hosted atRowan UniversityDr. Ayman AliDr. Yusuf A. Mehta, Rowan University Dr. Mehta is a Professor at the Department of Civil and Environmental Engineering at Rowan University. Dr. Mehta has extensive experience in teaching pavement materials and pavement systems. Dr. Mehta has published several technical and educational papers in leading professional organizations.Miss Shivani Dharmavir Patel, New Jersey Department of Transportation c American Society for Engineering Education, 2018 Evaluation of the 2017
-management Certificate, Pan American University at Edinburg, TX 1975 Teaching Certification, Pan American University at Edinburg, TX Appointments 09/2018-present RET Master Teacher Coordinator; Special Projects, The University of Texas at Austin; Cockrell School of Engineering, NASCENT Education Research Center 11/1/12-2018 Evaluator, Chemical Engineering, The University of Texas at Austin Cockrell School of Engineering, NASCENT Education Research Center 09/1/11-present External evaluator, Chemical Engineering, The University of Texas at Austin Sustainable Grid Integration of Distributed and Renewable Resources (IGERT) 09/2003-08/2005 Principal Investigator, College of Natural Sciences, The University of Texas at