Paper ID #15677WORK IN PROGRESS: An Integrated DSP and Embedded MicrocontrollerLaboratory CurriculumProf. Todd D. Morton, Western Washington University Todd Morton has been teaching the upper level embedded systems and senior project courses for West- ern Washington University’s Electrical Engineering and Electronics Engineering Technology program for 27 years. He is the author of the text ’Embedded Microcontrollers’, which covers assembly and C pro- gramming in small real-time embedded systems and has worked as a design engineer at Physio Control Corporation and at NASA’s Jet Propulsion Laboratory as an ASEE-NASA Summer
essential to prepare students for “active lives as informed citizens” [39-40].The curriculum for the major in Engineering Studies consists of fundamental courses in math,science, and engineering sciences – selected by each student from an approved list – as well asconsiderable coursework in the traditional liberal arts. The framework for students to integrate allthese courses is provided by a three-course required core curriculum in Engineering Studies:Engineering Economics; Engineering & Public Policy; and Engineering and Society.The Engineering Studies Core CurriculumThe mission of the Engineering Studies Program at Lafayette College is to help students from avariety of majors connect engineering and the liberal arts (Figure 1). The learning
Paper ID #38328The Curriculum Puzzle: Developing and Integrating Materials to Localizea CurriculumNrupaja Bhide, Purdue University, West Lafayette Nrupaja is a graduate researcher at the School of Engineering Education at Purdue University. She is interested in exploring how local knowledge can be centered in STEM curricula. ¨Ya˘gmur Onder, Purdue University, West Lafayette ¨ Ya˘gmur Onder is an undergraduate at Purdue University majoring in Mechanical Engineering and minor- ing in Global Engineering Studies. She’s involved with DeBoer Lab in Purdue’s School of Engineering Education research where her
courses for engineering students and leads study-abroad trips for students. c American Society for Engineering Education, 2018 Integration of Global Competencies in the Engineering CurriculumKeywords: curriculum, study abroad, globalIntroductionThe need for developing global competency in engineering students has received considerableattention over the past several years and a number of high-profile reports [1] [2] have highlightedthis need. A variety of programs have emerged to address this need ranging from namedprograms like Purdue’s Global Engineering Programs [3], college programs focused on theEngineering Grand Challenges (see for example [4]), at least one “global competence certificate”program [5
six individual skillmodules covering skills such as dependability, responsibility, independence, persistence,integrity, and ethics. The main goal is to create multiple opportunities to teach and reinforcesoft skills within the regular technical curriculum in the high schools. This paper discussesthe integration of the soft skills modules into the technical curriculum developed viaexamples, and outlines its potential uses in this engineering department’s curriculumincluding its manufacturing engineering program. The paper concludes with a discussion ofthe implementation of this project and provides some preliminary feedback from theparticipating high schools and reflections of the authors. It also includes future workopportunities such as
at Loyola University Chicago. She teaches graduate-level courses in program evaluation, qualitative research methods, and mixed methods. She has been the PI on seven major evaluation projects that ranged from one to five years in length. Her scholarship focuses on practitioners’ data use and evaluation capacity building within non-profits through coaching. She received a Bachelors in Psychology from Calvin College, and a PhD in Educational Psychology from the University of Illinois, Urbana-Champaign. c American Society for Engineering Education, 2019 An Integrated Social Justice Engineering Curriculum at Loyola University ChicagoIntroductionIn
from the new curriculum are provided, giving an example showingthat students are performing at a higher level of learning with the new curriculum than with theold curriculum. Finally future work for the curriculum is presented.Integrated versus Federated CurriculumThe old flying qualities phase curriculum was a collection of federated short courses that could beshuffled and presented in a way that matched aircraft and instructor availability. The sacrifice tothis system is a synergistic effect that occurs when material is integrated tightly such that topicsare reinforced, keeping threads of learning intact throughout a curriculum. The learning thatoccurred when the curriculum was federated was often described as a “mile wide and an inchdeep
teaching and learning methods to power engineering education. c American Society for Engineering Education, 2016 An Introductory Laboratory in Power Engineering Technology: A Systems Approach Matthew TurnerAbstractThis paper presents the design of a curriculum and the associated hardware for the laboratory componentof an introductory power engineering technology course for sophomore students. The content wasdeveloped to implement a systems approach that uses the modern electric power network as aninterconnected system to be designed, analyzed, and tested. The major hardware components of theelectrical power system are studied and analyzed in individual laboratory
six groups of4 (approximately) members each. The instructor meets with each team individually and discusses theirquestions and explains to them how specific questions can be clarified and improved. Although, theentire activity from start to finish is carefully monitored by the instructor with continuous feedbackand grading of team-performance, independent team work and individual responsibility are alsoemphasized. This activity can be replicated in other CGT courses as well other disciplines. The resultssuggest that it can be an effective means to strengthen CG course pedagogy. This approach willfacilitate assessment of tactile learning methods in CGT course curriculum and help with a continuous‘Course Improvement Plan’. Ultimately this
Paper ID #20913Instilling Entrepreneurial Mindset by Vertical Integration of Engineering ProjectsShankar Ramakrishnan, Arizona State University, Polytechnic campus Dr. Shankar Ramakrishnan received his PhD in Electrical Engineering from Arizona State University. He is currently part of the engineering education team in the Ira A. Fulton Schools of Engineering at Arizona State University. Currently he designs the curriculum for the freshman engineering program at the Polytechnic campus of the Arizona State University. He also designs and teaches engineering design courses in the first and sophomore years at ASU. His interests
their participation in a CT-intensive biology unit? 3. How to best prepare and support teachers to educate students in CT via engineering design?The curriculum, instructional app, and associated teacher professional learning (TPL) are beingdeveloped by an interdisciplinary team, including experts in neuroscience, biomedicalengineering, instructional technology, as well as K-12 science education and research partners.Using design research [28], [29], we are iteratively designing a sustainable and scalable neuralengineering curriculum unit with teachers as design partners.Project ComponentsInstructional ModulesThe instructional modules strategically integrate NGSS life science disciplinary core ideas,engineering practices, and
manufacturing scheduling, systems control and automation, distributed control of holonic systems and integrated manufacturing, agile manufacturing, virtual reality and remote laboratory applications in edu- cation. He has authored or co-authored various journal and conference publications in these areas. Mert Bal is currently the Chair and Associate Professor at the Miami University, Department of Engineering Technology, Ohio, United States of America.Dr. Farnaz Pakdel, Miami University American c Society for Engineering Education, 2021 Integrating 3D Printing into Engineering Technology Curriculum1. IntroductionThree-dimensional (3-D) printing has witnessed
internal biases. It is equally well-suited to apply more equitableassessment and instruction methodologies. This work in process is a pilot study embedding somenon-traditional assessment methods as well as DEI topics within the coursework to assess thelong-term goal of integrating it throughout the curriculum. They were performed through a juniorlevel course in Systems Thinking and Modeling and a Senior Design Project, both required in theIndustrial and Systems Engineering curriculum.BackgroundDEI in the ClassroomThe traditional engineering curriculum relies solely on teaching the nuts and bolts of what isthought to be needed as an engineer. Many experts agree that these courses do not adequatelyprepare students to enter today’s engineering
components.Mechatronics is a newer branch of mechanical engineering that is a synergistic combination ofmechanical, electrical, electronics, computer science, control techniques, and informationsystems. Integrating mechatronics content in mechanical engineering curriculum has been achallenge since it has been viewed as a significant deviation from traditional courses. In the past,pedagogical approaches like semester-long, project-based classes, or linking mechatronics toother engineering disciplines, have been used to integrate mechatronics into the mechanicalengineering curriculum, with varying results. Furthermore, teaching an interdisciplinary class ofthis nature within a semester is a difficult pedagogical endeavor. To overcome these issues, thetopics and
Paper ID #42268Alumni Engagement and Mentoring Integrated in the Chemical EngineeringCurriculumDr. Joaquin Rodriguez, University of Pittsburgh Joaquin Rodriguez is an Assistant Professor at the Department of Chemical and Petroleum Engineering at the University of Pittsburgh since 2018. He received his bachelor degree in Chemical Engineering from Universidad Simon Bolivar (Caracas, Venezuela), MSc. and PhD in the same discipline from the University of Pittsburgh (1990-92). He developed his expertise in thermal cracking processes and advanced materials (cokes, carbon fibers) from oil residues, and became a business leader for
University Dr. Courtney Pfluger is an Associate Teaching Professor at Northeastern University. In 2011, began as an Assistant Teaching Professor in First-year Engineering Program where she redesigned the curriculum and developed courses with sustainability and clean water themes. In 2017, she moved to ChE Department where she has taught core courses and redesigned the Capstone design course with inclusion pedagogy practices. She has also developed and ran 9 faculty-led, international programs to Brazil focused on Sustainable Energy. She has won several teaching awards including ChE Sioui Award for Excellence in Teaching, COE Essigmann Outstanding Teaching Award, and AIChE Innovation in ChE Education Award. She also
. Georgeou, “Geometric dimensioning and tolerancing (GD&T) integration throughout a manufacturing engineering curriculum,” Proceedings, ASEE conference, 2016.[5] D.M. Yip-Hoi, D. Gill, “Use of Model-Based Definition to Support Learning of GD&T in a Manufacturing Engineering Curriculum,” Proceedings, ASEE conference, 2017.[6] Rios O., “An Example of Teaching Geometric Dimensioning and Tolerancing (GD&T) Concepts using 3D Printed Parts,” Proceedings, ASEE Gulf-Southwest Section Annual Conference, 2018.[7] J. Fuehne, “Metrology education including GD&T in engineering technology,” Proceedings, ASEE conference, 2022.[8] K.P. Hewerdine, J.M. Leake, and W.B. Hall, “Linking CAD and metrology to
is executed, data is collected, stored, and graphed onto an integrated computer system. The computer automatically pulls relevant information from the resulting stress vs strain curve. The young’s modulus in N/mm² was recorded for each test. Fig 7. Dogbone specimen set up in the Universal Testing system for a tensile strength test. Compressive testing uses the Universal Testing System, but applies a force inwardinstead of an outward force. The specimen is
manufacturing engineering in HVAC and Steel Mill. Trisha is currently a Lecturer in the Engineering Studies at Rochester Institute of Technology. She is currently pursuing a Master’s in Manufacturing and Mechanical System Integration at RIT.Mark Davis, Rochester Institute of TechnologyDr. Yunbo Zhang, Rochester Institute of Technology Dr. Yunbo Zhang is currently an Assistant Professor in Department of Industrial & Systems Engineering at Rochester Institute of Technology (RIT). Dr. Zhangˆa C™s research focuses on investigating computational methods for advancing design and manufacturingDr. Rui Liu, Rochester Institute of Technology Dr. Rui Liu is currently an Assistant Professor in the Mechanical Engineering Department at
Paper ID #22462Integrating Design Thinking into an Experiential Learning Course for Fresh-man Engineering StudentsDr. Mark J. Povinelli, Syracuse University Dr. Mark Povinelli is the Kenneth A. and Mary Ann Shaw Professor of Practice in Entrepreneurial Lead- ership in the College of Engineering and Computer Science and the Whitman School of Management at Syracuse University where he is developing and teaching curriculum in innovation and entrepreneurship. Dr. Povinelli current research interests and curriculum development are in experiential team learning approaches to engineering education focused on design thinking
. Robin Fowler, University of Michigan Robin Fowler is a lecturer in the Program in Technical Communication at the University of Michigan. She enjoys serving as a ”communication coach” to students throughout the curriculum, and she’s especially excited to work with first year and senior students, as well as engineering project teams, as they navigate the more open-ended communication decisions involved in describing the products of open-ended design scenarios.Mark Mills, UM, Center for Academic Innovation Mark Mills is a Data Scientist with the Center for Academic Innovation at the University of Michigan. He is responsible for leading analysis across the Center in support of its mission to leverage data for shaping
department-wide changes in curriculum with emphasis on project- and lab-based instruction and learning. His research interests are in the areas of engineering education, semiconductor device characterization, design and simulation, signal integrity and THz sensors. He is a member of IEEE and ASEE. c American Society for Engineering Education, 2017 Session W1A Work-in-Progress - An Introductory Course in Electrical Engineering: Lessons Learned and Continuing Challenges Melinda Holtzman and Branimir Pejcinovic
Paper ID #13631DNA Extraction Using Engineering Design: A STEM Integration Unit (Cur-riculum Exchange)Corey A Mathis, Purdue University, West Lafayette Corey Mathis is a Ph.D student in Engineering Education at Purdue University. She received her B.S. in biology and her M.E.D. in secondary education from Northern Arizona University and is a former high school science and technology teacher. Her research interest includes improving students learning of science and engineering through integrated STEM curricula.Dr. Tamara J Moore, Purdue University, West Lafayette Tamara J. Moore, Ph.D., is an Associate Professor in the School
engineering concentrations. Strict avoidance ofpre-designed kits forced students to experience the frustrations and rewards of creating uniquedesign content. The project selected consisted of a magnetically levitated, wirelessly powereddesk lamp.A key initial assumption was that students enrolled in the class would have a wide range ofdifferent hardware and software skill sets. The assumption (which turned out to be correct)necessitated the selection of assemblies that could be integrated into a unique design withminimal prior knowledge or experience. This applied to both hardware and software tools. It alsomade the project choice more difficult, since there needed to be sufficient flexibility to giveadvanced students an interesting challenge while
diverse student populations, as prior work has shown that low self-efficacyis often a contributor to attrition [5, 6].Within an undergraduate curriculum at a small, teaching-focused institution in the southeast, anintegrated student outcome thread focused on development of civil engineering design skills wasadopted and mapped by faculty across a series of 16 departmental courses. The design outcomethread encompasses instructional material from courses in 1) Introduction to Civil andEnvironmental Engineering, 2) Dynamics, 3) Geomatics Lab, 4) Highway Engineering, 5)Mechanics of Materials, 6) Hydrology and Hydraulics, 7) Asphalt and Concrete Laboratory, 8)Measurements, Analysis and Modeling of Civil Engineering Systems, 9) Reinforced ConcreteDesign
paradigm in education through an NSF sponsored program. Long experience in curriculum development. Extensive knowledge in academic programs, professional development programs and on the job training plans. Motivated, fluent in English with multi-lingual capability, internationally educated professional, with work experience in different countries and international organizations. Highly diversified, person- able and outreaching communication skills. Winner of 2012 faculty of the year award at Lawrence Tech- nological University. Nominated for Teaching Excellence and Using Technology in Classroom Awards.Mr. Jerry Cuper, Lawrence Technological University Jerry Cuper is a professor and advisor in the Department of Engineering
Paper ID #25732FOUNDATIONS – Integrating Evidence-based Teaching and Learning Prac-tices into the Core Engineering CurriculumDr. Gail P Baxter, Center for Innovation in Engineering and Science Education Gail P. Baxter is the Co-Director, Center for Innovation in Engineering and Science Education (CIESE) at Stevens Institute of Technology. Baxter leads CIESE research and evaluation efforts on several na- tional and statewide K-12 STEM curriculum development and teacher professional development pro- grams and she manages a program to support faculty adoption of evidence-based teaching practices in the core courses in the
(written, oral, and graphical forms) (ABET SLO G, SLO K) 3. Function effectively on a team (ABET SLO E, SLO I)The Senior Design course draws upon all prior courses by exposing the student to an integrated,capstone design experience. The course is a critical component of the curriculum and providesthe student with a comprehensive opportunity to utilize the skills and abilities obtained throughthe MET program core material as well as the incorporated engineering design content. Inaddition, this course represents a major design experience and allows students to demonstratethat they have the ability to work in teams to design, develop, implement and improve integratedproducts and systems. Senior Design course is not a lecture-based course
Paper ID #28839An Integrated Multi-year Iterative and Service-oriented Capstone ProjectDr. Joyce Blandino P.E., Virginia Military Institute Dr. Joyce Blandino received her Ph.D. in Biomedical Engineering from the University of Virginia. She is currently an Associate Professor in the Department of Mechanical Engineering at the Virginia Military Institute. She previously taught in the Biology Department at Washington and Lee University. Before that, she was a faculty member at James Madison University.Col. Jon-Michael Hardin P.E., Virginia Military Institute Jon-Michael Hardin, Ph.D. Professor and Department Chair in the
. She earned a Ph.D. in chemical engineering from Polytechnic University (now NYU Polytechnic School of Engineering), an SM in Chemical Engineering Practice from the Massachusetts Institute of Technology and a BS in Chemistry from the University at Albany of the State University of New York. Dr. Brown is a registered professional engineer in New York State. c American Society for Engineering Education, 2017 Incorporating Undergraduate Research Experiences in an Engineering Technology Curriculum Benito Mendoza, Manuel Sairitupa, and Pamela Brown New York City College of Technology {bmendoza