Norwegian Centre for Autonomous Marine Operations and Systems (a Centre of Excellence for re- search in Norway) on locomotion control of ground and swimming snake robots. In 2011, he received the Masters degree from the University of Alberta, Canada where he was with the Telerobotic & Biorobotic Systems Laboratory. He joined the Locomotor Control Systems Laboratory at the University of Texas, Dallas, as a Postdoctoral Research Associate in November 2016, where he was using neuromechanical principles in the context of feedback control theory to design wearable robot control systems. His research interests include robotics, control systems, and cyber-physical systems.Prof. Destin Heilman
several sections, including PV (photovoltaic engineering),H2PEM (Proton Exchange Membrane hydrogen fuel cells), wind energy technology and solarenergy assessment. The impact of these technologies on a future hydrogen economy, the impact onsmart grids, and job creation are also introduced. The curriculum draws heavily on the experienceand background, both theoretical and field experience, of the instructors including NSF and DOEgrants that allowed the design and implementation of a certified hydrogen development laboratory,and development of instructional materials for PEM training. The curriculum integrates key topicssuch as MATLABR and SIMULINKR modeling and simulation of critical components includingPEM Fuel Cells, PV with storage and grid
training, and athleticcompetition. Acceptance rates are low, around 12% [12], but graduation rates are high,approximately 80-85% [13]. Unlike many other academic institutions, incoming USAFAstudents are not accepted to a college or school associated with a major’s program (e.g., Collegeof Engineering). USAFA has nine institutional outcomes, and one is devoted to all graduatesbeing able to apply the engineering method. To meet this outcome, all students take fiveengineering courses as a part of the general education curriculum regardless of their major. Theearly general education engineering courses present an opportunity to recruit undeclared studentsinto engineering during their first year.Field Engineering and Readiness Laboratory ContextIn
(i), (ii) were deployed in 2-, 3-day PIC device characterization bootcamps, co-organized bythe collaborators’ Laboratories for Education, Application, and Prototyping (MassachusettsLEAP Labs) [19]. A Three-Legged Stool (3LS) training model that combined lecture, VR simtraining, and lab-site physical tool trainingwas developed to structure and pace this high-volumecontent, short-duration intensive training experience.The 3LS emphasis on hands-on experiential education in a lab or lab-like setting, is an integralcomponent of most Science, Technology, Engineering, and Math (STEM) learning processes,including in the manufacture of PIC chips. In addition to mastering fundamental concepts insemiconductor electronic and photonic device design and
of Connecticut conducted a PBSL experience where approximately 400first-year engineering students designed and built Corsi-Rosenthal (C-R) boxes (DIY AirPurifiers) that trap 56-91 % of respiratory aerosols and improve indoor air quality. The C-Rboxes were built for a nominal cost of $60 per box, using a 20” box fan, four 20”x20”x2”MERV-13 filters, the box from the fan, and duct tape. The project was carried out by smallgroups (3-4 students) working in the First-Year Design Laboratory over four weeks. At the endof the project, the C-R boxes were distributed to the local elementary schools. During the pandemic, these first-year engineering students had completed their final yearin high school remotely, under lockdown. Thus, this C-R box
domestic undergraduate students in focus in the United States higher education institutions. In addition, Mr. Halkiyo is interested in broadening the participation of engineering edu- cation in Ethiopian universities to increase the diversity, inclusivity, equity, and quality of Engineering Education. He studies how different student groups such as women and men, rich and poor, students from rural and urban, and technologically literate and less literate can have quality and equitable learning experiences and thrive in their performances. In doing so, he focuses on engineering education policies and practices in teaching and learning processes, assessments, laboratories, and practical internships. Mr. Halkiyo has been
. Gregory L. Long Ph.D., Massachusetts Institute of Technology Gregory L. Long, PhD is currently the Lead Laboratory Instructor for NEET’s Autonomous Machines thread at the Massachusetts Institute of Technology. He has a broad range of engineering design, prototype fabrication, woodworking, and manufacturing experiNathan Melenbrink, Massachusetts Institute of TechnologyDr. Amitava ’Babi’ Mitra, The Pennsylvania State University Amitava ’Babi’ Mitra linkedin.com/in/babimitra|+1-617-324-8131 | babi@mit.edu Dr. Amitava aˆ C˜Babiˆa C™ Mitra is the founding Executive Director of the New Engineering Education Transformation (NEET) program at MIT ©American Society for Engineering Education, 2023The
Paper ID #38203Undergraduate Research as a Tool for Building Entrepreneurial Mindset inEngineering StudentsDr. Heather Dillon, University of Washington Dr. Heather Dillon is Professor and Chair of Mechanical Engineering at the University of Washington Tacoma. Her research team is working on energy efficiency, renewable energy, fundamental heat transfer, and engineering education. Before joining academia, she worked for the Pacific Northwest National Laboratory (PNNL) as a senior research engineer working on both energy efficiency and renewable energy systems, where she received the US Department of Energy Office of Science
Paper ID #39576Unconventional Applications of Introductory-Level Aerospace EngineeringConcepts: Evaluating Student Engagement and Performance in aFree-Response Exam FormatBenjamin Casillas, Texas A&M University Ben Casillas is a senior aerospace engineering major at Texas A&M University. As an undergraduate researcher at the NUANCED Laboratory, their work focuses on novel presentations of introductory-level curriculum. Outside the lab, their interests include chemical rocket propulsion, spaceflight human systems integration, digital art, and music composition.Dr. Kristi J. Shryock, Texas A&M University
logiccircuits. In this work, we emphasize student learning of sequential logic circuits since it is atopic that embodies all of the preceding topics in the course. During the laboratory sessions,students learn how to use programmable logic devices (i.e. FPGA) and write HardwareDescription Language code to model the circuits that they learn about in the lecture.Figure 1 shows an example assessment from the class. In this problem, the students were given acircuit with several flip-flop circuits, an example input waveform and were asked to predict whatthe output waveform would be. This sample problem, and student response, shows whysequential logic circuit are so difficult for students to analyze. Not only do they have to recallhow each device operates
Undergraduate Programs in the Depart- ment of Bioengineering at the University of Illinois at Urbana-Champaign (UIUC). She has been active in improving undergraduate education including developing laboratories to enhance experimental design skills and mentoring and guiding student teams through the capstone design and a translational course following capstone design. In her Director role, she works closely with the departmental leadership to manage the undergraduate program including: developing course offering plan, chairing the undergrad- uate curriculum committee, reviewing and approving course articulations for study abroad, serving as Chief Advisor, and representing the department at the college level meetings. She is
, mechanics of materials, soil mechanics with a laboratory,civil engineering materials, and introductory structural analysis. Furthermore, over 70% ofprograms offer the following topics in a required or elective undergraduate course: dynamics,steel I, reinforced concrete I, and foundations. While many programs offer a robust list ofgraduate course offerings in their catalogs, none of the programs require the following coursesand fewer than 40% of universities made them available to students in undergraduate programs:seismic, wind, finite element methods, structural dynamics, steel II, concrete II, masonry design,prestressed concrete, and bridge design. The data showed that universities conferring graduatedegrees offered more courses, but only some
-school outreachprogram in engineering design for middle school students (ages 11-14), and how instructorsviewed the successes, challenges, and tensions of their students’ laboratory experiences. A challenge associated with NGSS and ASEE implementation is the meaningful integrationof science and engineering knowledge and skills in precollege teaching and learning. Researchhas identified issues that science teachers encounter with integrated STEM instruction, includinglack of relevant content knowledge, lack of administrative support, and weak self-efficacy inengineering pedagogy [4,10,11]. Research in STEM integration education has suggested thatinnovative instructional models and curricular resources are needed to demonstrate how scienceand
Companies to Safety, https://www.ishn.com/ articles/89771-100-committed-companies[4] National Society of Professional Engineers (NSPE) (2023). NSPE Code of Ethics for Engineers, https://www.nspe.org /resources/ethics/code-ethics[5] International Code Council (ICC) (2021). International Building Code, https://codes.iccsafe.org/content/IBC2021P1[6] Ting, J. M. (2020). Safety moments in chemical safety education. Journal of Chemical Education, 98(1), 9-14.[7] Viitaharju, P., Yliniemi, K., Nieminen, M., & Karttunen, A. J. (2021). Learning experiences from digital laboratory safety training. Education for Chemical Engineers, 34, 87-93.[8] Fivizzani, K. P. (2016). Where are we with lab safety education: Who, what, when, where, and how
engineering questions / problems] involving applications of algebra and trigonometry, vectors [and complex numbers], systems of equations and matrices, derivatives, integrals, and differential equations in engineering.• Use MATLAB and Excel to analyze and solve a variety of introduction engineering mathematics problems.• Conduct and evaluate a variety of physical experiments using engineering laboratory equipment.• Create cogent, well-written [laboratory reports including executive summaries / executive summaries for engineering laboratory assignments].• [Acquire knowledge, as needed, to answer engineering questions]Figure 1: Learning objectives for the engineering math / tools and analysis course, whereconsistent text is in black and changes
to control devices, take datafrom sensors, and analyze that data. Each module, inspired by one of the engineering majorsavailable on campus, culminates with a small design project. Each project lends itself tohighlighting different aspects of the design process, as well as different ways of sharingprototypes.Most modules take four laboratory periods, and the basic structure of each module is similar.During the first three lab periods students work in teams of four to build a physical device orobject. The procedures for these first three periods are fairly prescriptive and introduce studentsto new tools, components, techniques, and concepts. As the module progresses, students startconsidering elements of a design challenge that applies their
beyhond.Shelby HackerDr. Stephen J Spicklemire, University of Indianapolis Has been teaching physics at UIndy for more than 35 years. From the implementation of ”flipped” physics class to the modernization of scientific computing and laboratory instrumentation courses, Steve has brought the strengths of his background in physics, engineering and computer science into the classroom. Steve also does IT and engineering consulting.Dr. Kenneth Reid, University of Indianapolis Kenneth Reid is the Associate Dean and Director of the R.B. Annis School of Engineering at the Univer- sity of Indianapolis and an affiliate Associate Professor in Engineering Education at Virginia Tech. He is active in engineering within K-12, serving on the
Paper ID #39049Board 367: Reflections from an Interdisciplinary Team Research Projectduring a 10-week NSF REU ProgramProf. Eric Markvicka, University of Nebraska, Lincoln Dr. Eric Markvicka is an Assistant Professor in the Department of Mechanical and Materials Engineering at the University of Nebraska-Lincoln (UNL). There, he also holds a courtesy appointment in the De- partment of Electrical and Computer Engineering and the School of Computing. At UNL Dr. Markvicka directs the Smart Materials and Robotics Laboratory, an interdisciplinary research lab that is creating the next generation of wearable electronics and
Bryan ISD PSJA ISD Ave teacher salary (%) Aldine ISD 0 50 100 150 200 % Relative (100 = Texas' average) Fig. 1. Comparison of ISDs near TAMU [2]The program aimed to recruit 10 in-service teachers and 2 pre-service teachers each time for 3summers. The 6-week program was originally divided into 3 periods. The program providedhands-on laboratory activities to complement the theoretical sessions. 1) Weeks 1, 2: Program covered orientation, lab safety, and
Ph.D from North Carolina State University in the Fall of 2020.Eileen Johnson, University of Michigan Eileen Johnson received her BS and MS in bioengineering from the University of Illinois at Urbana- Champaign. She previously worked in tissue engineering and genetic engineering throughout her educa- tion. She is currently pursuing her PhD in biomedical engineering at the University of Michigan. After teaching an online laboratory class, she became interested in engineering education research. Her research interests now are focused on engineering student mental health and wellness.Mr. Joseph Francis Mirabelli, University of Illinois, Urbana - Champaign Joseph Mirabelli is an Educational Psychology graduate student at
future work could be done with this style ofcollaboration. SampleThe project started as part of an introduction to biomedical engineering program at a RU(unspecified university) that was debuting a new teaching style called Innovation Based Learning(IBL). In IBL, students were allowed to pitch projects they wanted to work on for class credit, andteams were formed based on the projects selected. The project to develop the new prosthetic devicerequired advanced manufacturing methods, leading the team to form a relationship with a TCU(unspecified technical university) and its Advanced Manufacturing Laboratory. The peopleinterviewed for the publication were volunteers from among the students, facility
an affiliate Associate Professor in Engineering Education at Virginia Tech. He is active in engineering within K-12, serving on the Technology Student Association and Solid Rock International Boards of Directors, and has recently co-authored a high school text, ”Introduction to Engi- neering”.Dr. Stephen J. Spicklemire, University of Indianapolis Has been teaching physics at UIndy for more than 35 years. From the implementation of ”flipped” physics class to the modernization of scientific computing and laboratory instrumentation courses, Steve has brought the strengths of his background in physics, engineering and computer science into the classroom. Steve also does IT and engineering consulting.Dr. Joseph B
,excluding work at national laboratories. While these 2012 insights are useful, there is a need to“benchmark” the findings against the changes in the nuclear sector over the following decade. Inaddition, there is a need to expand the findings to consider including the role of HBCUs in abroader range of engineering, science, and other disciplines required by the nuclear sector.In 2013, the National Academy also produced a report on workforce trends in the United Statesenergy and mining sector [11]. This report is inclusive of all energy sources and includes asection on nuclear energy. In this report, nuclear energy was identified as a mature sector alongwith oil, gas, and mining. The report considered the current systems of nuclear power generationin
Engineering at Rose- Hulman Institute of Technology. She is the director of the multidisciplinary minor in robotics and co- director of the Rose building undergraduate diversDr. James A. Mynderse, Lawrence Technological University James A. Mynderse, PhD is an Associate Professor in the A. Leon Linton Department of Mechanical, Robotics, and Industrial Engineering at Lawrence Technological University. He serves as director for the BS in Robotics Engineering and MS in Mechatronics and Robotics Engineering programs.Dr. Vikram Kapila, New York University Vikram Kapila is a Professor of Mechanical and Aerospace Engineering. He directs a Mechatronics, Con- trols, and Robotics Laboratory and has held visiting positions with the
disciplines at the university level.Utilizing a visual medium such as picture books and graphic novels can make scientific conceptsmore accessible and memorable [1]. One example of this is the use of storytelling in nursingprograms [2,3], utilizing a method that mirrors the way the nursing students will receiveinformation from future patients. In a science course, Crocetti and Barr examine the use ofstorytelling and graphic novels to deliver science literacy concepts [4]. In the engineering field,digital storytelling has become a tool to use the digital medium to convey technical information ina more accessible way to non-technical audiences [5], to learn technical information in a civilengineering laboratory setting [6], and to develop engineering
paper will frame a typical CS1 problem – calculating the price of abusiness transaction and subsequently accepting payment and providing change to the customer –through the familiar scenario of buying donuts at a local donut shop. Students are provided withsuch artifacts as the donut shop’s menu, government publications for calculating sales tax, anddonut shop photos. Students are primed for success through preliminary laboratory assignmentsseparately focusing on the professional responsibilities for calculating sales tax, making change,and formatting monetary output while emphasizing the importance of breaking problems downinto their components. This approach has successfully been used as our first “major” CS1programming assignment, as
are covered. Introduces center of gravity theory, defines how to locate centers of gravity, and introduces weight and balance procedures for engineering technology, not covered by flight ground school [14].” In this course, students are introduced to electric propulsion nomenclature, applicable aircraft configurations, and applicable standards and federal laws for aircraft design. b) In AT 26200 Basic Aircraft Powerplant Technology, this course is “A study of the design, construction, and operating practices of aircraft reciprocating and small gas turbine engines. Laboratory exercises emphasize airworthiness evaluation, fault-isolation techniques, and standard service/maintenance practices [14
from the perspective of systemthinking, and build a full-cycle green engineering design framework that is not limitedto the preparation and development of product materials. On this basis, a fulllife-cycle immersion teaching session is formed from the preparation design ofpolymer raw materials, to the injection molding of polymer products, to the promotiondesign of products, and finally to the recycling and reuse of products[12]. The School of Biotechnology has conducted several experiments in biologyteaching, such as the Biological Laboratory Safety Experiment, in which students willsimulate different levels of biosafety protection and practice biological waste sortingoperations to build awareness of biosafety and environmental
. Atotal of 31 students took part of the first implementation of this specialization semesterfrom two different campus in a regional format with activities in two different locations.The instrumented bridge was tested using a designed experiment with loading tests. Thedata acquired during the tests was then analyzed by students and it was used to calibratea Finite Element Model of the bridge in order to evaluate its structural health state. Sixdifferent instructors and professors participated during different modules of thesemester, some in laboratory tests and others in lectures and research. The educationaloutcomes sought during the design of this specialization semester were achieved withvery positive results that are included in detail in the
, Jun. 2020, p.34188. doi: 10.18260/1-2--34188.[6] I. Kuznetcova et al., “Using a mobile Virtual Reality and computer game to improvevisuospatial self-efficacy in middle school students,” Computers & Education, vol. 192, p.104660, Jan. 2023, doi: 10.1016/j.compedu.2022.104660.[7] U. Dakeev, R. Pecen, F. Yildiz, L. Sowell, S. Obeidat, and I. Basith, “Development ofVirtual Reality Robotics Laboratory Simulation,” in Development of Virtual Reality RoboticsLaboratory Simulation, Vancouver, Canada, May 2022. [Online]. Available:https://aseezoneiv2022.engineering.ubc.ca/[8] R. Wilson, “Visual Perception and Its Role in Information Processing,” Journal of VisualPerception, vol. 45, no. 1, Art. no. 1, 2021.[9] J. Bhowmik and S. Jain