Paper ID #11587Design for Impact: Reimagining Inquiry-Based Activities in Heat Transferfor Effectiveness and Ease of Faculty AdoptionDr. Margot A Vigeant, Bucknell University Margot Vigeant is a professor of chemical engineering and an associate dean of engineering at Bucknell University. She earned her B.S. in chemical engineering from Cornell University, and her M.S. and Ph.D., also in chemical engineering, from the University of Virginia. Her primary research focus is on engineering pedagogy at the undergraduate level. She is particularly interested in the teaching and learning of concepts related to thermodynamics
higher education STEM courses. He is currently the co-chair of the campus’ Task Force on Innovation that examines opportunities for the enhancement of the educational experience for faculty and students across they Daytona Beach campus.Dr. Massood Towhidnejad, Embry-Riddle Aeronautical University - Daytona Beach Massood Towhidnejad is Director of NextGeneration ERAU Applied Research (NEAR) laboratory, and Professor of Software Engineering in the department of Electrical, Computer, Software, and Systems En- gineering at Embry-Riddle Aeronautical University. His research interest includes; Software Engineering, Software Quality Assurance and Testing, Autonomous Systems, and Air Traffic Management (NextGen). In
Paper ID #46306BOARD # 293: Reflection on Outcomes Data from Eight Years of a SummerREU Site in Systems Bioengineering and Biomedical Data SciencesDr. Timothy E. Allen, University of Virginia Dr. Timothy E. Allen is a Professor in the Department of Biomedical Engineering at the University of Virginia. He received a B.S.E. in Biomedical Engineering at Duke University and M.S. and Ph.D. degrees in Bioengineering at the University of California, San Diego. Dr. Allen’s teaching activities include coordinating the undergraduate teaching labs and the Capstone Design sequence in the BME department at the University of Virginia
Division Best Paper Award and the 2018 Benjamin J. Dasher Best Paper Award for the IEEE Frontiers in Education Conference. She has also been recognized for the synergy of research and teaching as an invited participant of the 2016 National Academy of Engineering Frontiers of Engineering Education Symposium and the Purdue University 2018 recipient of School of Engineering Education Award for Excellence in Undergraduate Teaching and the 2018 College of Engineering Exceptional Early Career Teaching Award. American c Society for Engineering Education, 2021 Career Progression of CISTAR Summer Program ParticipantsAbstractThis poster focuses on the outcomes of
Virginia University Melissa Morris is currently a Teaching Associate Professor for the Freshman Engineering Program, in the Benjamin M. Statler College of Engineering and Mineral Resources at West Virginia University (WVU). She graduated Summa cum Laude with a BSME in 2006, earned a MSME in 2008, and completed her doctorate in mechanical engineering in 2011, all from WVU. At WVU, she has previously served as the Undergraduate and Outreach Advisor for the Mechanical and Aerospace Engineering department and the Assistant Director of the Center for Building Energy Efficiency. She has previously taught courses such as Thermodynamics, Thermal Fluids Laboratory, and Guided Missiles Systems, as well as serving as a Senior
Gwen each carved one activity from their lesson plans to apply in their classrooms.Cristina engaged her students (about half female and 40% minority) in a laboratory activityrequiring the capture and detection of bacteria at low concentrations. She reports most studentswere highly engaged in the activity, with one student extending it for a science fair project andplacing at the state-level STEM fair. Students in Gwen’s archaeology course manufactured theirown adobe bricks and then participated in a guided inquiry lab for their preservation. She reportsthat many of her 21 students (57% female, 80% minority) have inquired about careers in researchas a result of the activity.Art, who teaches Physics at his school, is developing a pre-engineering
Undergraduate Education. Journal on Excellence in College Teaching, 1997. 8(3): p. 77-94.15. Schamel, G. and M. Ayres, The Minds-on Approach: Student Creativity and Personality Involvement in the Undergraduate Science Laboratory. Journal of College Science Teaching, 1992. 21(4): p. 226-229.16. Kardash, C.M., Evaluation of an Undergraduate Research Experience: Perceptions of Undergraduate Interns and their Faculty Mentors. Journal of Educational Psychology, 2000. 92(1): p. 191-201.17. Kremmer, J.F. and R.G. Bringle, The Effects of an Intensive Research Experience on the Careers of Talented Undergraduates. Journal of Research and Development in Education, 2000. 24(1): p. 1-5.18. Tai, R.H., et al., Planning Early for Careers in Science. Science
explained above. We willalso focus on our new pre-/post motivation survey and planned implementations of the hands-onlearning modules to undergraduate and high school students at a small number of institutions.IntroductionHands-on teaching methods have a long history, but generally these are in the form of science-based laboratory classes that accompany lecture courses or capstone laboratory courses such asthe chemical engineering unit operations laboratory.While STEM instruction is considered mature, engineering students graduate with a surprisinglack of understanding of core concepts, even though seasoned professors teach the material. Amarked reversal occurs with team activities as Washington State University (WSU) students whoused miniaturized
other long-term funding to continue long term development is nowunderway.References 1. S. Tegen, Growing a Wind Workforce: The National Wind Energy Skills Assessment Report (Poster). No. NREL/PO-5000-61251. National Renewable Energy Laboratory (NREL), Golden, CO., 2014. 2. “Wind Vision: A New Era for Wind Power in the United States,” https://energy.gov/eere/wind/maps/wind-vision, 2015 (accessed January 2017). 3. “AWEA U.S. 2017 Market Reports” https://www.awea.org/resources/publications-and- reports/market-reports/2017-u-s-wind-industry-market-reports, 2017 (accessed December 2018) 4. D. Billing, "Teaching for Transfer of Core/Key Skills in Higher Education: Cognitive Skills," Higher education 53.4 (2007
) research laboratories at CMU for high school STEM teachers; providing an opportunity for high school STEM teachers to design research-based curriculum projects that are aligned with topics they teach at their respective local schools; developing skills, abilities, and attitudes of teachers related to their roles as teacher leaders, curriculum developers, and assessment designers as they plan High School Content Expectations (HSCEs)-aligned experiences for their students; coaching by CEIE staff for participating teachers throughout the academic year as they implement the curricula they have planned; disseminating the results from both research and curriculum development activities to
Mechatronics kits and peripheralhardware as shown in Fig. 2. The students had access to the project setup and toolbox inthe laboratory while the teaching assistant was available. The groups also had the optionto check-out their toolbox and work with it at home or outside the lab at their own pace,which was well received and taken advantage of by the students. Lectures devoted to discussing the overall conceptof mechatronics and introducing the overall Lab-VIEW software environment were also incorporatedin the Introduction to Robotics course. The firstlecture discussed a simple LabVIEW Virtual Instru-ment (VI) was developed to explain the Front Panel(FP) and Block Diagram (BD) windows, and themanner in which these tools could be used to developa
Y in robotics”, Proceedings of ASEE AC 2009-750.32. Liu, Y., “From handy board to VEX: the evolution of a junior-level robotics laboratory course”, Proceedings of ASEE AC 2009-1890.33. Karatrantou, A, “Introduction in basic principles and programming structures using the robotic constructions LEGO Mindstorms”, Tzimogiannis A., Proceedings of the 3 rd National Conference, Teaching Informatics, University of Peloponnese.34. Eslami, A., “A remote-access robotics and PLC laboratory for distance learning program”, Proceedings of ASEE AC 2009-1410.35. Ren, P., “Bridjing theory and practice in a senior-level robotics course for mechanical
recipient of several ASEE awards, including the Fahein award for young faculty teaching and educational scholarship, the two-time recipient of the Corcoran award for best article in the journal Chemical Engineering Education, and the recipient of the Martin award for best paper in the Chemical Engineering Division at the ASEE Annual Meeting.Dr. Ronald L. Miller, Colorado School of MinesMs. Debra Gilbuena, Oregon State University Debra Gilbuena is a Ph.D. candidate in the School of Chemical, Biological, and Environmental Engi- neering at Oregon State University. She currently has research focused on student learning in virtual laboratories. Debra has an M.BA, an M.S., and four years of industrial experience including a
©American Society for Engineering Education, 2023 Paper ID #39169 for administrative, budgetary, hiring, and tenure decisions, and for leading the faculty and staff in the development of research, teaching, and public service programs. Oversees administrative and research expenditures of about $75M per year. Oversees and participates in extensive advancement activities as head, including managing and increasing the Dept. endowment of approximately $75M. Leads aggressive faculty hiring campaign that has hired 35 new tenure-track, 8 teaching, and 5 research faculty since Jan. 2014. Director, Coordinated Science Laboratory
product archaeology modules and teaching strategies. This sectionpresents a look at each of the courses and accompanying implementations. A table is providedfor each implementation presenting the necessary information for each course implementation.Tables 1-11 show how various universities implemented product archaeology across differentdisciplines, course sizes, course levels, locations of the implementations (in-class, outside class,laboratory setting), types of implementations (individual or group), and length of theimplementations (1 class/lab session, 1-2 weeks, 1 month, entire semester/quarter). The tablesalso illustrate the variety of assessment instruments (design scenarios, pretest/posttestcomparisons, student work, other) in the far
the director of marketing for Drexel’s College of Engineering and director of operations for Worcester Polytechnic Institute - Engineering. Now, as CEO of Christine Haas Consulting, LLC, Christine travels around the world teaching courses to scientists and engineers on presentations and technical writing. She has taught clients across gov- ernment, industry and higher education, including Texas Instruments, Brookhaven National Laboratory, European Southern Observatory (Chile), Simula Research Laboratory (Norway) and the University of Illinois-Urbana Champaign. Christine works closely with Penn State University faculty Michael Alley (The Craft of Scientific Presentations and The Craft of Scientific Writing) and
technologies to enhance Drexel’s Engineering Tech- nology course offerings. Eric is currently pursuing a Ph.D in Computer Engineering at Drexel, and is an author of several technical papers in the field of Engineering Technology Education. Page 24.1091.1 c American Society for Engineering Education, 2014Imaging of Solar Cells:A Gateway to Teaching STEM DisciplinesAbstractIn this project, we are using image processing (both visible, near infrared, and farinfrared) to study various aspects of solar cells including their materials, deviceoperation, defects, variability, and reliability. Laboratory projects
and served in several ad- ministrative roles within higher education; secured over $5.5M funding and support for STEM education research; and led several program development efforts, including: a childcare facility at a federal research laboratory, STEM K-12 teacher training programs, a Molecular Biology/Biotechnology master’s degree program at a small internationally-focused teaching institution, as well as a first-year engineering program and a B.S. Engineering Technology degree program at an R1 research institution. She has been recognized for her teaching, advising, and service, and as an Exemplary Faculty Member for Excellence in Diversity, Equity, and Inclusion.Dr. David A. Wyrick PE, CPEM, West Virginia
Foundation for the Advancement of Teaching and Council for Advancement and Support of Education (CASE).Dr. Anthony Bourne, Wright State University Dr. Bourne is the Director of Enrollment Management at Wright State University and completed his PhD in Engineering at Wright State. He holds a BA in Economics and MPA. His research focus is in engineering education and student success measures in engineering curriculum. Page 26.1580.1 c American Society for Engineering Education, 2015 The Wright State Model for Engineering Mathematics Education: Longitudinal Impact on Initially
Foundation for the Advancement of Teaching and Council for Advancement and Support of Education (CASE).Anthony Bourne, Wright State University Tony Bourne is the Director of Enrollment Management for the Wright State University College of En- gineering and Computer Science. He is a Wright State alumnus were he received a BA in Economics and completed his PhD in Engineering Spring 2014. He also holds an MPA from Walden University. His graduate research focused on interventions that increase student retention in open enrollment schools like Wright State. Tony worked several years in workforce development and education outside Wright State starting there in 2007, when he was hired as an enrollment adviser for the Department
]. Arguably, transfer of learning to new situations constitutes a core goal of education. Yetdecades of research have demonstrated that transfer of problem-solving strategies rarely happens spontaneously, and ishard to teach [4,13]. In the current project, we propose to address the transfer challenge by focusing on students’ roleidentity and motivation: the complex processes that underlie students’ decision to transfer and enact certain actionslearned in a previous role (e.g., Biodesign student) in a new role (e.g., capstone student).The Motivation to Transfer: The literature on student motivation includes numerous theories and multiple concepts thatdiffer in their emphasis on and interplay of different personal characteristics (e.g., grit, growth
Science, Associate Professor of Education, and Director and Graduate Chair for Engineering Education Research Programs at University of Michigan (U-M). Dr. Finelli is a fellow in the American Society of Engineering Education, a Deputy Editor of the Journal for Engineering Education, an Associate Editor of the IEEE Transactions on Education, and past chair of the Educational Research and Methods Division of ASEE. She founded the Center for Research on Learning and Teaching in Engineering at U-M in 2003 and served as its Director for 12 years. Prior to joining U-M, Dr. Finelli was the Richard L. Terrell Professor of Excellence in Teaching, founding director of the Center for Excellence in Teaching and Learning, and
. were completed at Vanderbilt University, and his B.S.Ch.E. at the University of Alabama. Silverstein’s research interests include conceptual learn- ing tools and training, and he has particular interests in faculty development. He is the recipient of several ASEE awards, including the Fahein Award for young faculty teaching and educational scholarship, the Cororan award for best article in the journal Chemical Engineering Education (twice), and the Martin award for best paper in the Ch.E. Division at the ASEE Annual Meeting. Page 25.1446.1 c American Society for Engineering
Marghitu, Auburn University Dr. Daniela Marghitu received her B.S. in Automation and Computing from Polytechnic University of Bucharest, and her Ph.D. degree in Automation and Computing from University of Craiova. She is a faculty member in the Computer Science and Software Engineering Department at Auburn University, where she has worked since 1996. Her teaching experience includes a variety of Information Technology and Computing courses (e.g., Object-Oriented Programming for Engineers and Scientists, Introduction to Computing for Engineers and Scientists, Network Programming with HTML and Java, Web Development and Design Foundations with HTML 5.0, CSS3.0 and JavaScript, Personal Computer Applications, Spreadsheet
Institute for Leadership in Technology and Manage- ment and from 2003 through 2007 as Associate Dean of the College of Engineering. In 2003 he received Bucknell’s Christian R. and Mary F. Lindback Award for Distinguished Teaching. Prof. Buffinton’s scholarly interests range across the areas of multibody dynamics, nonlinear control, mechanical design, systems thinking, entrepreneurship, engineering management education, and his pri- mary research focus, the dynamics and control of robotic systems. He has been the recipient of external grants from a number of funding agencies including the National Science Foundation, the Office of Naval Research, the Ben Franklin Technology Center of Pennsylvania, and most recently the
opportunities education majors have to practicediscourse development prior to their student teaching practicum. Discourse simulation activitiesat universities prior to student teaching and internships are often insufficient to prepare teachersfor engaging in discourse with students throughout an entire school day.Traditional Methods of Discourse DevelopmentTraditionally, discourse development begins with pre-service teachers’ own understanding ofmath and science based upon how they were taught when they were first learning the material.Most education programs require pre-service teachers to take at least one laboratory-basedscience course and to complete mathematics courses. Once the students have a foundation inmath and science, they then take courses
Paper ID #27162Board 137: Critical Thinking Skills in Non-calculus Ready First-yearEngineering StudentsDr. Lizzie Santiago, West Virginia University Lizzie Y. Santiago, Ph.D., is a Teaching Associate Professor in the Benjamin M. Statler College of Engi- neering and Mineral Resources. She holds a Ph.D. in Chemical Engineering and has postdoctoral training in neural tissue engineering and molecular neurosciences. She teaches freshman engineering courses and supports the outreach and recruiting activities of the college. Her research interests include neural tissue engineering, stem cell research, attrition and university
mathematics research is in geometric function theory and discrete groups; she also has a strong interest in broadening access to high-quality higher education and pedagogical innovations that aid in providing equal opportunities to students from all backgrounds. This passion led her to design and create a seven-MOOC Professional Certificate on C-programming for edX for which her team won the ”2019 edX Prize for Exceptional Contributions in Online Teaching and Learning”. Previously she designed a MOOC ”Analysis of a Complex Kind” on Coursera. Petra is the recipient of the New Hampshire High Tech Council 2018 Tech Teacher of the Year Award, the Binswanger Prize for Excellence in Teaching at Wesleyan University and the
Paper ID #41810Board 241: Developing PLC and Robotic Automation Technician CertificateProgram for Service IndustriesDr. Shouling He, Vaughn College of Aeronautics and Technology Dr. Shouling He holds a position of professor of Engineering and Technology at Vaughn College of Aeronautics and Technology, where she teaches various courses in Mechatronics and Electrical Engineering. Her academic and educational interests focus on Robotics and Automation, Machine Learning, and Mechatronics Education. She has authored over 50 papers published in journals and conferences.Dr. Douglas Jahnke, Vaughn College of Aeronautics and Technology
Agency and Department of HomelandSecurity accreditation. Faculty research interests include high-performance graphics processing,cybersecurity, and databases. Numerous computer science graduate students complete theirresearch projects and masters theses in the Business Computer Research Laboratory. Thedepartment had close to twenty-five graduate students. The department had smart classrooms anddedicated undergraduate instructional laboratories for computer forensics, parallel computing,operating systems security, database security and network security.The Computer Science Department has ABET accreditation. The department has 12 full-timegraduate faculty members, all with terminal degrees, and 16 teaching assistants. Their researchinterests range