sustainability and its incorporation into engineering curricula and engineeringdesign are of paramount importance across all engineering disciplines due to several factors,such as environmental protection, resource management, economic benefits, innovation/competitiveness, and social responsibility. Furthermore, with the increased focus onaccreditation criteria emphasizing engineering ethics and professional responsibilities across allfour ABET commissions, the topic of sustainability has been considered an essential addition tothe engineering technology curriculum. The engineering department at Cuyahoga CommunityCollege (Tri-C) initiated the process to determine how sustainability can be included in thecurriculum. The process was executed in the
; kinematics, kinetics of particles, rigid bodies inone, two, and three dimensions, Newton-Euler equations, as well as Work-energy and impulse-momentumprinciples. The primary textbook is a custom edition of Engineering Mechanics, an Introduction toDynamics [16]. A syllabus prepared for ABET accreditation purposes is hosted on the department website[17]. The course is a part of the required ME curriculum and a prerequisite for multiple later courses. Theexisting course used a flipped classroom design wherein students watch video lectures before coming toclass and then use class time to complete problem worksheets.The motivation for this project was the lead author’s emergent dissatisfaction with grading in their course- with the experience of that
learning scientists in twouniversities has been working on a collaborative grant project funded by the Department ofEducation for the purpose to enhance the student diversity in STEM fields. In this project, weaimed at (1) contextualizing the student learning experience in STEM fields, and (2)implementing an integrated STEM education approach to teach the skills and knowledge that arenecessary to be competent in engineering and technology careers in 21st century. The researchobjective of the present study is to investigate the effectiveness of evidence-based instructionalstrategies and the integration of the maker culture on students’ problem solving and life-longlearning skills. Specifically, we introduce evidence based pedagogy together with
Paper ID #27029Board 70: Development and Implementation of a Non-Intrusive Load Moni-toring AlgorithmDr. Robert J Kerestes, University of Pittsburgh Robert Kerestes, PhD, is an assistant professor of electrical and computer engineering at the University of Pittsburgh’s Swanson School of Engineering. Robert was born in Pittsburgh, Pennsylvania. He got his B.S. (2010), his M.S (2012). and his PhD (2014) from the University of Pittsburgh, all with a concen- tration in electric power systems. Robert’s academic focus is in education as it applies to engineering at the collegiate level. His areas of interest are in electric
Edward Berger is an Associate Professor of Engineering Education and Mechanical Engineering at Purdue University, joining Purdue in August 2014. He has been teaching mechanics for over 20 years, and has worked extensively on the integration and assessment of specific technology interventions in mechanics classes. He was one of the co-leaders in 2013-2014 of the ASEE Virtual Community of Practice (VCP) for mechanics educators across the country. His current research focuses on student problem-solving pro- cesses and use of worked examples, change models and evidence-based teaching practices in engineering curricula, and the role of non-cognitive and affective factors in student academic outcomes and overall success.Dr
engineering. Taking action as an ambassador might in turn impact her beliefs about how and whyindividuals decide to stay or leave the STEM pipeline in school. Actions might also impact herself-perceptions about her capacity to influence and lead others, thus strengthening herprofessional goals of achieving a leadership and mentorship position in engineering career. Thismight lead to further action possibilities of becoming a senior ambassador, and perhaps lookinginto engineering management as a future career goal. In this hypothetical case, all of these roleidentity components are in alignment. Moreover, different other roles, such as that ofundergraduate student (and the imagined role of future engineer) are integrated with the role ofthe
difficult to sustain in engineering education? 2015 Organizing Non-traditional Sessions on Current Topics 2016 The Proposed Changes to ABET Accreditation Criteria 2017 The Culture of Teaching 2018 Who's in the Driver's Seat in Engineering Education? Stop lecturing about active learning! Integrating Good Teaching Practices 2019 into ASEE Conference Sessions 2020 Engineers of the 2030s 2021 No Interdivisional Town Hall due to virtual platform 2022 Engineers of the 2030s 2023 Preparing Engineering Students for an Ever-Changing Planet Table 1: ITH Titles
for Engineering Education, 2024 Linking First-year Courses to Engage Commuter StudentsAbstractCommuter students face unique challenges in integrating into college learning communities.Engaging with first-year commuter students became incredibly challenging after the pandemicforced learning communities to transform into virtual or hybrid environments. To address thischallenge, we developed an approach to engage first-year commuter students in our departmentallearning community. We linked two introductory courses, Computer Science I (CS I) andFoundations of Computing, with joint-curricular and extracurricular activities offered bysophomores, juniors, and seniors from student clubs and a service-learning program. Informedby the
Paper ID #41330Co-Developing a Social Entrepreneurship Program with a Focus on EngineeringDr. Heather Greenhalgh-Spencer, Texas Tech University Heather Greenhalgh-Spencer, PhD, is an Associate Professor in the Department of Curriculum and Instruction at Texas Tech University, as well as the Associate Dean of the Graduate School. Her research emerges at the intersection of Educational Technology, Pedagogical Innovation, Personalized Learning, Diversity and Equity Issues, and Global Studies. Greenhalgh-Spencer explores practices of using technology and pedagogical innovation to create engaged learning in both formal and
. Joshua L. Hertz, Northeastern University Dr. Hertz earned a B.S. in Ceramic Engineering from Alfred University in 1999 and then a Ph.D. in Materials Science and Engineering from the Massachusetts Institute of Technology in 2006. Following this, he worked at the National Institute of Standards and Technology as a National Research Council postdoctoral fellow. He joined the Department of Mechanical Engineering at the University of Delaware as an Assistant Professor in September 2008, leading a lab that researched the effects of composition and nanostructure on ionic conduction and surface exchange in ceramic materials. In 2014, he moved to Northeastern University to focus on teaching and developing curriculum in the
. The goal is to provide insights that will help framefuture studies of students who do not value engaging with or belonging in their engineeringprograms to the detriment of their professional formation as engineers.Literature ReviewSense of Belonging and Persistence At a fundamental level, humans have the desire to belong. The desire for interpersonalrelationships has an additive effect on that desire. Previous research on students’ academicsuccess has primarily focused on the interaction between students’ sense of belonging,motivation, self-efficacy, and perception of curriculum [1], [2]. On the college campus andwithin STEM classrooms, several characteristics are known to commonly exhibit a positiveeffect on students’ sense of belonging
parameters. The interdisciplinary and intercultural team is more representative ofindustrial design teams, particularly from global companies.Due to the nature and scope required to design an entire chemical process in an intensive three-week period, this course is taught as a more structured design with some room for variation andcreativity in the plant design. The entire design is broken into major tasks, e.g., mass balance,kinetics and reactor design, separation, safety, and economics. The tutors develop specific tasksand goals (daily and overall) corresponding to these major tasks that the teams must meet.Additionally, during the second week, certain teams may be asked for more advanced designs, forexample, incorporating heat integration
of any other mechanical engineering course in the undergraduate curriculum. Thus, thisrepresented the identification of the first quantitative criterion used to assess the “health” of thecourse design: the non-completion rate. A discussion amongst department faculty members wassubsequently initiated for redesigning the course with an aim to improve the non-completionrate. This discussion led us to identify a second concern, which was that the statics knowledgeand skills of students who passed the course could not meet faculty expectations in downstreamcourses within the program. We, therefore, identified a second evaluation criterion regarding thequality of the course: the mastery level of specific knowledge and skills of students passing
Education Initiative (SJEI),launched fall 2016. The Search Advocate program enhances equity, validity, and diversity inuniversity hiring. Search advocates are OSU faculty, staff, and students who are trained as searchand selection process advisors. Their preparation includes a two-part (10-hour) workshop seriesaddressing current research about implicit bias, diversity, the changing legal landscape in hiring,inclusive employment principles, practical strategies for each stage of the search process, andeffective ways to be an advocate on a search committee. The OSU search advocate directorycurrently lists nearly 600 trained search advocates on OSU’s Corvallis and affiliated campuses.The SJEI consists of two 4-hour workshops with curriculum that
project. Figure 5. Gantt Chart (Integration and documentation sections) for Fall 2021Educational value and Observation This capstone project has been used as a tool to educate engineering students about theengineering skills as well as the science and public health related to vector-borne diseases.Moreover, students have been learning about the water properties. Typically, these are not the scopetaught in an engineering technology curriculum. Students have been expanding their horizon inlearning many skills and obtaining knowledge for this project. Based on the student’s statements, students have learned the importance of teamwork andplanning as well as the division of the tasks. And, some of them stated that it could serve as
’ persistence [12]. Introductionto civil engineering classes are an opportunity to provide this information and the RePicture Appcan be a tool for this.RePicture App Objectives and DevelopmentThe RePicture App objective is to increase interest and diversity in engineering. Our goal is totest the App’s use in civil engineering curriculum and then expand to other engineering andSTEM fields. The RePicture App helps students repicture the world around them and viewengineering as a career that is shaping the future.RePicture is a free tool to bring the engineering community together, including high schoolstudents, engineering students, professional engineers, and engineering organizations. It wasdeveloped based on our review of research and discussions with
Entrepreneurship (CMTE) at the University of Toronto. She also currently sits as the President of the Board for BrainSTEM Alliance and is the Executive Director of Work Integrated Learning at the Calgary Economic Development.Dr. Qin Liu, University of Toronto, Canada Dr. Qin Liu is a Senior Research Associate with the Institute for Studies in Transdisciplinary Engineering Education and Practice (known as ISTEP), Faculty of Applied Science and Engineering, University of Toronto, Canada. Her research areas include engineering student experiences and outcomes, including competency development and educational / career pathways, and scholarship of teaching and learning.Joanna Meihui Li, University of Toronto, Canada Joanna Li is an
engineeringnationally hover around 60%, but dip below 40% when accounting for various underrepresenteddemographics [1], [2]. Notably, these figures often paint an overly optimistic picture, asuniversities typically exclude pre-engineering students or those facing initial obstacles to startingthe engineering curriculum from graduation rate calculations.At Lipscomb University, students are allowed to declare engineering upon admission.Anecdotally, we see that many of these students attrit (to another degree program or leave theuniversity altogether) before beginning their engineering curriculum. This attrition is primarilyattributed to challenges in math remediation and delayed graduation timelines. Consequently, theactual graduation rates for this at-risk
doing” and one of the core values of “servicelearning”, the service learning project evaluates the quality of instruction by integrating the state-of-the-art technologies in an interdisciplinary project. It addresses Cal Poly Pomona’srecognition of its responsibilities to the community and the importance of applying andadvancing sustainable practices in our campus classrooms. It also provides a welcomingenvironment for prospective students to learn about Cal Poly Pomona.College of Engineering at CPP has Outreach Offices responsible for community developmentand outreach programs. The outreach programs enhance the College of Engineering’scommitment to support underserved populations by recruiting and graduating increased numbersof historically
) curriculum had studentsdeveloping in silos, without the required interaction and learning experience of work with otherinfrastructure-related disciplines [1]. Commonly, the academic preparation of scholars oninfrastructure-related disciplines takes place in disjunct professional domains as the onedescribed [2], [3] rarely tackling interdisciplinary problem-solving, nor focused on a systematicunderstanding of research results and lessons learned from previous disaster experiences.To provide a solution to this important split, we designed RISE-UP as a collaborative platformamong the three campuses, to allow Faculty from the three Campuses to develop an integratedcurriculum that is currently offered as a minor degree. Providing a shared academic space
competency. 9Fig. 2: Comparison of IDI scores pre- and post- program. Eleven students showed an increasingtrend and seven students showed a decrease.Conclusions The Sustainability Across Sectors – Sweden program impacted students’ short- and long-term academic and professional paths. The summative teaching evaluation scores reflect thatstudents gained new cultural perspectives and that the program integrated Swedish culture intothe curriculum. Students also recognized the program in the larger context of their engineeringmajor at Purdue University. The short-term benefits continued and evolved to shape studentschoices regarding graduate school, thesis research topics, additional intercultural
Paper ID #42335A Synthesis of Discoveries Spanning Ten Semesters of HyFlexDr. Lakshmy Mohandas, Purdue University Lakshmy Mohandas works as an Associate Instructional Developer Researcher at the Center for Instructional Excellence at Purdue University. She completed her Ph.D. in 2022 in Technology from Purdue. Her research interests lie in the interaction between technology and education to help provide equitable teaching and learning experiences. HyFlex learning model, AI in education, equitable learning using different modes of participation, student motivation, and achievement goals are some of her current contributing
Northwestern University. She has also served as an Associate Dean for curriculum, instruction, and advising in the College of Science, Associate Department Head of Economics and Undergraduate Program Director for Economics. She is Associate Editor at Economic Modeling. As a woman in STEM Dr. Ball has presented work on active learning and research, as well as women in science and is actively involved with mentoring for Committee for the Status of Women in the Economics Profession.Walid Saad, Walid Saad received his Ph.D degree from the University of Oslo in 2010. Currently, he is an Assistant Professor and the Steven O. Lane Junior Faculty Fellow at the Department of Electrical and Computer Engineering at Virginia Tech
, Supply Chain Optimization, Change Management, System Integration and LEAN Process Improvement (technical and business), Dr. Wickliff is passionate about Organizational Wellness and the Holistic Well- ness of individuals. She is also a professional Facilitator and Motivational Speaker. Dr. Wickliff earned a PhD in Interdisciplinary Engineering from Texas A&M University where she com- bined Industrial & Systems Engineering with Organizational Development to conduct research in the area of talent management and organizational effectiveness. She also completed an executive MBA from the University of Texas-Dallas and a BS in mechanical engineering from the University of Houston. She is founder of a nationally
Technology. His research focuses on integrating Makerspaces and Design Thinking with higher education to enhance learning through hands on interdisciplinary practices.Dr. Megan K Halpern, Michigan State UniversityDr. Isaac Record, Michigan State University Isaac Record is an Assistant Professor of Practice at Lyman Briggs College, Michigan State University, where he directs the Collaborative Experiential Learning Laboratory and teaches courses in philosophy of science, science and technology studies, and critical making. His research seeks to situate our epistemic and ethical circumstances within a network of values, capabilities, and material and social technologies. Isaac holds a PhD and MA from the Institute for the
manipulation of integrated system, malware information from within a in an Air- chosen covert device and to vulnerable device; optical computer otherwise Gapped leak of test key or acoustic noise reduced disconnected from Computer captured signal integrity surroundings Can use existing sound Acoustic MATLAB and signal Capture sounds of mechanical software and MATLAB to Keyboard
Manhattan-based mobile media development company developing augmented reality systems. He has also designed and implemented numerous mixed-reality systems for a variety of platforms and clients, including the British pop phenomenon, Duran Duran, and is currently developing augmented reality games for mobile platforms. Academically, he is an active researcher with several ACM and IEEE publications in virtual and augmented reality. As a graduate student in the Graph- ics, Visualization, and Usability (GVU) Center at the Georgia Institute of Technology, he contributed to early research in the nascent field of self-harmonizing karaoke software. He currently serves as a Profes- sor in Computer Game Design and Development
traditions, folklore, and historical narratives. For instance,an AI-driven platform could transcribe and translate indigenous stories into written form. Long-term ethical education can also serve as a perennial concept. Rather than a one-time ethicsworkshop, integrate ongoing ethics education into AI courses. For instance, students could explorecase studies related to indigenous knowledge and AI.Furthermore, collaboration should be achieved with local communities, linguists, and educators toensure that AI systems are culturally sensitive. Regularly update algorithms to reflect evolvingcultural norms. Moreover, AI tools that facilitate the documentation and dissemination ofindigenous knowledge should be developed. In addition, involving community
Page 26.1389.8serve to impact an individual’s spatial ability. We expect that this analysis to be the most impactful 7in the future as the lived experiences that impact spatial ability can be translated into instructionalinterventions that can be applied in existing curricula in STEM disciplines. 6. Conclusion We trust our study will inform engineering education community in two ways: 1).Gaining a deeper insight on the intrinsic relationships between spatial thinking and STEMdisciplines. 2). Findings from this study can lead to clues on how to integrate elements of spatialthinking with engineering concepts and incorporating
acres about 20 minutes from downtown Pittsburgh. In 2002, following approval by thestate Department of Education, the college became Robert Morris University. From a School ofAccountancy with 26 students, Robert Morris University has grown to an enrollment of over3,400 undergraduate, graduate, and doctoral students. Robert Morris University’s mission is tobe the gateway to engaged, productive, and successful careers and lives. True to its heritage ofprofessional education and applied instruction, Robert Morris University builds knowledge,skills, and citizenship and prepares students to lead with integrity and compassion in a diverseand rapidly changing world. Robert Morris University is a nationally ranked university thatcombines academic