student PSVT:R scores, grades,retention, and progress towards graduation.References 1. Guay, R.B. (1977). Purdue Spatial Visualization Test: Rotations. Purdue Research Foundation, West Lafayette, IN. 2. Maier, P. H. (1994). Raeumliches vorstellungsvermoegen. Frankfurt A.M., Berlin, Bern, New York, Paris, Wien: Lang. 3. Barke, H.D. (1993). Chemical education and spatial ability. Journal of Chemical Engineering, 70(12): 968-971. 4. Sorby, S. A. (2000). Spatial abilities and their relationship to effective learning of 3-D modeling software. Engineering Design Graphics Journal, 64(3), 30-35. 5. Eyal, R. & Tendick, F. (2001). Spatial ability and learning the use of an angled laparoscope in a virtual environment
1449490. Any opinions, findings, and conclusions orrecommendations expressed in this material are those of the author(s) and do not necessarilyreflect the views of the National Science Foundation.References[1] C. B. Zoltowski, B. K. Jesiek, S. A. Claussen, and D. H. Torres, “Foundations of Social and Ethical Responsibility Among Undergraduate Engineering Students: Project Overview,” in Proceedings of the 2016 ASEE Annual Conference and Exposition, June 26-29, 2016, New Orleans, LA, USA. [Online]. Available: https://peer.asee.org/foundations-of-social-and-ethical-responsibility-among- undergraduate-engineering-students-project-overview[2] D. S. Fuentes, G. M. Warnick, B. K. Jesiek, and R. Davies, “A Longitudinal
Faculty of the Faculty Cluster Initiative’s Learning Sciences Cluster at the University of Central Florida. Her research focuses on measuring self-regulated learning across research and learning contexts, such as STEM classrooms.Prof. Hyoung Jin Cho, University of Central Florida Professor Hyoung Jin Cho is the Associate Chair of the Department of Mechanical and Aerospace Engineering at the University of Central Florida. He coordinates two undergraduate programs – B. S. Mechanical Engineering and B. S. Aerospace Engineering. He has published over 130 peer-reviewed journal and proceeding papers. He has 12 and 6 patents granted in the U.S. and Korea, respectively, in the areas of sensors, microfluidic devices, and micro
Education. 6. An extension of the FIE 2013 article comparing the engineering fields with the largest enrollments but smallest percentage of women, namely Electrical and Mechanical Engineering is also being considered. This was not originally planned in the proposal but has been a useful analysis.Finally, a consideration of the exchange between Mechanical and Aerospace Engineering is thefocus of an ASEE 2014 conference paper.7Publications Related to this GrantM. K. Orr, S. M. Lord, R. A. Layton, and M. W. Ohland, (in press). Student Demographics andOutcomes in Mechanical Engineering in the U.S.. International Journal of MechanicalEngineering Education.M. Madsen Camacho and S. M. Lord (2013). Latinos and the Exclusionary Space of
versus constructive) to determine how these typesof teaching impact student responses. Finally, we plan to determine what differences can befound between different types of institutions (such as community colleges, MSIs, PWIs, Doctoralgranting institutions) or class types (engineering, science, math).AcknowledgementsThis research is supported by the U.S. National Science Foundation (grant numbers DUE-1821092, DUE-1821036, DUE-1821488, and DUE-1821277). Any opinions, findings, andconclusions or recommendations expressed in this material are those of the author(s) and do notnecessarily reflect the views of the National Science Foundation.References[1] L. Deslauriers, L. S. McCarty, K. Miller, K. Callaghan, and G. Kestin, "Measuring actual
. Joseph David Richardson Joseph D. Richardson is an Assistant Professor in the William B. Burnsed, Jr. Department of Mechanical, Aerospace and Biomedical Engineering at the University of South Alabama.Tom ThomasNicole Carr ©American Society for Engineering Education, 2023 Engaging Transfer Students in a College of EngineeringAbstractThe LINK scholarship program at the University of South Alabama is funded by an NSF S-STEM grant, awarding scholarships to low-income students transferring from communitycolleges in the Gulf Coast region to complete degrees in chemical, civil, computer, electrical, ormechanical engineering. The program provides financial support and academic mentoring tofoster student
-975). International Society of the Learning Sciences, June2010.Corcoran, T.B., F.A. Mosher and A. Rogat, A. (2009). Learning progressions in science: Anevidence-based approach to reform, CPRE Research Report# RR-63. New York: Consortium forPolicy Research; 2009 May.Foster, C., Wigner, A., Lande, M., & Jordan, S., & Lande, M. (2018). Learning from parallelpathways of makers to broaden pathways to engineering. International Journal of STEMEducation. 5(1), 6.Hatano, G. and K. Inagaki, Two courses of expertise. In H. Stevenson, H. Azuma, & K. Hakuta(Eds). Child development and education in Japan (pp. 262-272), NY: Freeman, 1986.Jordan, S. & Lande, M. “Additive innovation: Radical collaboration in design thinking andmaking
, 2017. 3. Choy, S., Nontraditional Undergraduates. 2002, U.S. Department of Education, National Center for Education Statistics: Washington, DC. 4. Rodriguez, A., M. Carnasciali, S. Ciston, M. Whitson, and V. Berendt (2016, Sept) Stress and Response Patterns in Adult Engineering Student within Higher Education. Paper presented at 2016 ASEE Rocky Mountain Section Conference, Cedar City, UT. https://www.suu.edu/rms2016/ 5. Seymour, E. & Hewitt, N. H. (1997). Talking about leaving: Why undergraduates leave the sciences. Boulder, CO: Westview Press 6. Carnasciali, M., & Thompson, A. E., & Thomas, T. J. (2013, June), Factors influencing students' choice of engineering major. Paper presented at
towards a teacher-led model and empower partner organziations to interactwith each other outside of university mediation.AcknowledgementsThis material is based upon work supported by the National Science Foundation under Grant No.1657263. Any opinions, findings, and conclusions or recommendations expressed in this materialare those of the authors and do not necessarily reflect the views of the National ScienceFoundation.References[1] H. M. Matusovich, R. A. Streveler, and R. L. Miller, “Why Do Students Choose Engineering? A Qualitative, Longitudinal Investigation of Students’ Motivational Values,” Journal of Engineering Education, vol. 99, no. 4, pp. 289–303, Oct. 2010.[2] S. L. R. Bennett, “Contextual Affordances of Rural Appalachian
National Science Foundation. The authors also acknowledge all of thefaculty that have contributed questions, comments, other instructional materials, and time intousing and improving the AIChE Concept Warehouse.References1. Halloun, I. and Hestenes, D. (1985). The initial knowledge state of college physics students. American Journal of Physics 53, 1043.2. Hestenes, David, Wells, Malcolm, and Swackhamer, Greg. (2002). Force Concept Inventory. The Physics Teacher, 30,141.3. Mazur, E. (1997) Peer instruction, Prentice Hall, Upper Saddle River, NJ.4. Evans, D. L., Gray, G. L., Krause, S., Martin, J., Midkiff, C., Notaros, B. M., et al. (2003). Progress on concept inventory assessment tools. Proceedings of the 33rd Annual ASEE/IEEE Frontiers
: 10.1002/j.2168-9830.2005.tb00833.x.[2] B. Balamuralithara and P. C. Woods, "Virtual laboratories in engineering education: The simulation lab and remote lab," Computer Applications in Engineering Education, vol. 17, no. 1, pp. 108-118, 2009, doi: 10.1002/cae.20186.[3] J. Ma and J. V. Nickerson, "Hands-on, simulated, and remote laboratories: A comparative literature review," ACM Computing Surveys (CSUR), vol. 38, no. 3, pp. 7-es, 2006, doi: 10.1145/1132960.1132961.[4] M. D. Koretsky, D. Amatore, C. Barnes, and S. Kimura, "Enhancement of Student Learning in Experimental Design Using a Virtual Laboratory," IEEE Transactions on Education, Article vol. 51, no. 1, pp. 76-85, 2008
Department of Technology and Society. She is currently the Assistant Director of STEM Smart programs, which include programs S-STEM ASSETS, LSAMP, and NASA NY Space Grant. Lauren has had the opportunity to participate in many professional development programs, such as the first cohort of the Research Foundation Leadership Academy, and Research Foundation Mentoring Program. Lauren received her Master of Arts in Higher Education Ad- ministration from Stony Brook University in May 2017. Her current research analyzes the gender equity in higher education, with a focus of females in STEM. With her research background, Lauren is a Women in Science and Engineering (WISE) affiliated member, and instructs the course, Society and
Academy of Engineering, Committee on Public Understanding of Engineering Messages, Changing the Conversation: Messages for Improving Public Understanding of Engineering. Washington, D.C.: National Academies Press, 2008.[4] National Governors Association Center for Best Practices, Council of Chief State School Officers, Common Core State Standards for English Language Arts & Literacy in History/Social Studies, Science, and Technical Subjects. Washington D.C.: National Governors Association Center for Best Practices, Council of Chief State School Officers, 2010.[5] C. Anderson, “Perspectives on Science Learning,” in Handbook of Research in Science Education, S. K. Abell and N. Lederman, Eds. Mahwah, N.J.: Lawrence Erlbaum
work supported by a National Science Foundation DUEGrant No 2215807. Any opinions, findings, conclusions, or recommendations expressed in thismaterial are those of the authors and do not necessarily reflect the National Science Foundation’sviews.References[1] Litzinger, T., Lattucca, L., Hadgraft, R., & Newstetter, W. (2011). “Engineering education and the development of expertise.” Journal of Engineering Education, 100(1), 123-150.[2] Hake, R. R. (1998). “Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses.” American journal of Physics, 66(1), 64-74.[3] Streveler, R. A., Brown, S., Herman, G. L., & Montfort, D. (2015). Conceptual change and
point.AcknowledgementsThis material is based upon work supported by the National Science Foundation under Grant No.1607811. Any opinions, findings, and conclusions or recommendations expressed in this materialare those of the author(s) and do not necessarily reflect the views of the National ScienceFoundation. The authors would also like to thank Dr. Daniel Knight of the University ofColorado Boulder for his collaboration and support, as well as the graduate and undergraduateresearchers who participated in data collection and analysis throughout the project: TahsinChowdhury, Jessica Deters, and Christopher Gewirtz at Virginia Tech; Nicholas Alvarez,Sidharth Arunkumar, and Amy Tattershall at New Mexico Tech; Finn Giardine, Annie Kary, andLaura Rosenbauer at Smith
that have been voiced surroundingthem. While COVID prevented or hindered the implementation of most planned interventions,our findings thus far demonstrate that the recruitment and first-semester interventions aresupporting many of the students’ needs. However, we realize additional steps may better meetprogram participants needs as they transition into their graduate studies. By doing so, weanticipate an increase in the positive outcomes of the SEnS-GPS students’ GPAs, programretention, and graduation rates.References 1. T. Figueroa & S. Hurtado, “Underrepresented racial and/or ethnic minority (URM) graduate students in STEM disciplines: A critical approach to understanding graduate school experiences and obstacles to degree
/Usualness Appropriateness/Sensicality Literal sentences unoriginal/highly usual highly appropriate /sensical Metaphorical sentences original/highly unusual highly appropriate /sensical Anomalous sentences original/highly unusual highly inappropriate/nonsensicalTable 1. Characteristics critical sentences (literal, metaphorical, anomalous) used in the experiment.The present study builds on Rutter et al.’s [1] study with an aim to extend our currentunderstanding on how the creative potential may be dependent on an individual’s priorknowledge, with a specific focus on engineering knowledge. To this end, we asked engineeringand nonengineering
0.999 0.999 FunctionB Page 26.178.9 Weighted Avg. 0.999 0.001 0.999 0.999 0.999 0.999 === Confusion Matrix === a b 16. Lockerd, A. & Breazeal, C. Tutelage and socially guided robot learning. in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings 4, 3475–3480 vol.4 (2004).17. Konidaris, G., Kuindersma, S., Grupen, R. & Barto, A. Robot learning from demonstration by constructing skill trees. Int. J. Robot. Res. 31, 360–375 (2012).18. Ammar, B., Rokbani, N. & Alimi, A. M. Learning system for standing human detection. in Computer Science and Automation
(S < 29) 31 (~57%) Neglected (29 <= S < 31) 12 (~22%) Reversed (31 <= S) 11 (~20%)The results above suggest that, for practicing engineers making decisions with data presented intabular form, targeting the consequences of variability is relatively difficult: Whereasengineering students readily targeted variability in scenarios with “everyday” variability (>90%of individuals targeted), in this pilot only ~57% of participants targeted variability correctly. It ispossible that the ~20% of participants with “reversed” responses were attempting to targetvariability, and that in a more deliberate setting (i.e., in the workplace), they would have
differentdomains. Building on our experiences so far and following a planned approach that includesinterdisciplinary collaboration and strategic and iterative evaluations, we aspire to add to the knowledge-base of NSF’s 10 Big Ideas, the human-technology frontier.[1] “Grand Challenges for Engineering,” National Academy of Engineering, Washington D.C., 2017.[2] G. M. Mace et al., “Aiming higher to bend the curve of biodiversity loss.,” Nature Sustainability, vol. 1, no. 9, pp. 448–451, 2018.[3] S. Fawzy, A. I. Osman, J. Doran, and D. W. Rooney, “Strategies for mitigation of climate change: a review,” Environmenal Chemistry Letters, pp. 1–26, 2020.[4] I. Mohedas, S. R. Daly, and K. H. Sienko, “Requirements Development: Approaches and
national and international conferences, scientific journals, and books. Stan serves as a reviewer and a member of program committees for a number of national and international conferences. During his academic career, Stan received over seven million dollars in funding from private and federal sources. ©American Society for Engineering Education, 2023 Using Agile Principles for Cohort Building in a Graduate Software Engineering ProgramAbstractThis report describes an approach to building a cohort of students in a graduate softwareengineering program supported by the Scholarships in Science, Technology, Engineering, andMathematics (S-STEM) Program of the National
/TheLinkWing.pdf. [Accessed Dec. 26, 2022][2] E. Beheshti, D. Weintrop, H. Swanson, K. Orton, M. Horn, K. Jona, and U. Wilensky, “Computational thinking in practice: How STEM professionals use CT in their work,” in American Education Research Association Annual Meeting, San Antonio, TX, Apr., 2017.[3] J. Malyn-Smith, I. Lee, F. Martin, S. Grover, M. Evans, and S. Pillai, “Developing a framework for computational thinking from a disciplinary perspective, “ in Proceedings of the International Conference on Computational Thinking Education, International Conference on Computational Thinking Education, Hong Kong, HK, Jun., 2018.[4] L. Hood and L. Rowen, “The human genome project: big science transforms
University. I have over 25 years of teaching and research experience and over ten years of industrial experience. c American Society for Engineering Education, 2018 Product Lifecycle Management Scholarship ProgramAcknowledgement. This material is based upon work supported by the National ScienceFoundation under Grant No. 1060160.Introduction.The Product Lifecycle Management (PLM) Scholarship Program is supported by a NationalScience Foundation Scholarships in STEM (S-STEM) grant. The goal of the S-STEM programis to provide academically sound, but financially challenged, students with the means to enroll asfull-time students at Oakland University in the fields of Industrial and Systems Engineering
rubrics have been tested. Discipline Course Level Institution Class Pedagogy Type Size Biology/Health Introductory, RU, CU M, L, Case Study, Lecture, Lab, Sciences Intermediate, XL Peer Instruction, POGIL, Advanced Other Chemistry Introductory, RU, PUI S, M, Case Study, Lecture, Lab, Intermediate, L, XL PBL, Peer Instruction, Advanced
workers into the US creates incentives to displace workerswho are born in the US [2], [3]. Many others believe that we should concentrate on urging andsupporting schools to increase the interest of their students in STEM, and colleges anduniversities to increase the number of students who not only major in STEM fields but alsocomplete degree programs in those fields [4].The National Science Foundation (NSF), for example, is working with colleges and universitiesto help increase the number of American students who complete their STEM degrees at alllevels. One program that illustrates this effort is the NSF Scholarships in Science, Technology,Engineering, and Mathematics Program (NSF S-STEM). This program seeks: “ 1) to increasethe number of low
%20Org%20Seq %202012-08.pdf. [Accessed February 19 2014].[8] Stevens Institute of Technology, "Areas of Concentration," Department of Mechanical Engineering, 2014. [Online]. Available: http://www.stevens.edu/ses/me/undergrad/concentrations. [Accessed 24 April 2014].[9] K. Kuriyan, A. C. Catlin and G. V. Reklaitis, "PharmaHUB: Builing a Virtual Organization for Pharmaceutical Engineering and Science," Journal of Pharmaceutical Innovation, vol. 4, no. 2, pp. 81-89, 2009.[10] L. Simon, K. Kanneganti and K. S. Kim, "Drug Transport and Pharmacokinetics for Chemical Engineers," Chemical Engineering Education, vol. XLIV, no. 4, pp. 262-266, 2010.[11] M. R. Prausnitz and A. S. Bommarius, "Drug Design, Development
subgroups.AcknowledgementsThis material is based upon work supported by the National Science Foundation under grantnumbers DUE #1834425 and DUE #1834417. Any opinions, findings, and conclusions orrecommendations expressed are those of the authors and do not necessarily reflect the views ofthe NSF.References[1] O. Ha and N. Fang, "Spatial Ability in Learning Engineering Mechanics: Critical Review," Journal of Professional Issues in Engineering Education and Practice, vol. 142, no. 2, p. 04015014, 2015.[2] J. G. Cromley, J. L. Booth, T. W. Wills, B. L. Chang, N. Tran, M. Madeja, T. F. Shipley and W. Zahner, "Relation of Spatial Skills to Calculus Proficiency: A Brief Report," Mathematical Thinking and Learning, vol. 19, no. 1, pp. 55-68, 2017.[3] S. A. Sorby
motivating them to choose a career path in thearea of UAV technologies.AcknowledgementThe project is funded by the NSF’s EEC Program. We would also like to thank Lockheed MartinCorporation and Northrop Grumman Corporation, and NASA Armstrong Flight Research Centerfor hosting the participants and giving them a tour their research labs and facilities. We wouldalso like to thank Northrop Grumman Corporation and Lockheed Martin Corporation for theircontinued support of the UAV Lab at Cal Poly Pomona.References[1] S. Bhandari, Z. Aliyazicioglu, F. Tang, and A. Raheja, “Research Experience for Undergraduates in UAV Technologies,” Proceedings of American Society of Engineering Education Annual Conference, Salt Lake City, UT, 25-28 June 2018
is a frequent speaker on career opportunities and diversity in engineering. Page 25.110.1 c American Society for Engineering Education, 2012 A Successful 4-Year Academic Scholarship Program for Upper Division Engineering and Computer Science Non-Transfer Students and Graduate StudentsAbstractThis paper describes a successful four-year academic scholarship program for upper divisionengineering and computer science students funded by a National Science Foundation’s S-STEMgrant that ran from Fall 2007 through Spring 2011. Scholarships of $2,000 per semester weregiven
culturewith a focus on better supporting traditionally underrepresented students. Subsequent researchwill explore how student participation in these types of engagement activities correlate to thedevelopment of an inclusive makerspace and engineering education culture.Acknowledgement – This material is based upon work supported by the National ScienceFoundation S-STEM program under Grant No. 1834139. Any opinions, findings, andconclusions or recommendations expressed in this material are those of the authors and do notnecessarily reflect the views of the National Science Foundation.References[1] M. Galaleldin, F. Bouchard, H. Anis and C. Lague, "The impact of makerspaces on engineering education," in Proceedings of the Canadian Engineering