implement data tablesand graphs into an ELN, and most computers already include software that will produce tablesand graphs.ELNs in Undergraduate EducationThe following section borrows heavily from Cardenas (2014)3. There are a few examples in theliterature regarding ELNs in undergraduate education. Meyer et al described the use of anHTML-based laboratory notebook (design journal) in a capstone digital systems course atPurdue4 . Assessment of the students’ laboratory notebooks showed improvement when twotablet PCs were allocated per team, but the students reported that the HTML format was ahindrance to maintaining their notebooks, and indicated a preference for a commercial ELN Proceedings of the 2014 American Society for Engineering
has taught undergraduate courses in thermodynamics, heat transfer, combustion, air-conditioning, dynamics, and senior capstone design.Prof. Jiancheng Liu, University of the Pacific Dr. Jiancheng Liu is an Associate Professor of Mechanical Engineering at the University of the Pacific. Dr. Liu’s research experience and teaching interest have been in the areas of machine design and manu- facturing engineering, with specific focuses on CNC machine tool design, mechanical micro machining, cutting process, flexible manufacturing system automation, sensing and control technology, and intelligent CAM technology. With his many years’ experience in industry and universities, Dr. Liu has published over 80 technical
, andConclusions – Teamwork (3-5 students/team), 9 short form reports, individualME – 471 Machine Design II ME 481 – Senior Capstone DesignDesign Project Documentation: Problem Definition, Progress report,Formal Design Reports Project Report ( 1 @ 35- 200 pages) Detailed description of design approach, results, and conclusions, with supporting documentation Teamwork 3-5 Students/Team Multiple industry interactions, small group presentations
Paper ID #9695Faculty Perceptions of Student Engagement: A Qualitative InquiryMariaf´e Taev´ı Panizo, James Madison University Mariaf´e Panizo is a second year graduate student in JMU’s Graduate Psychology program. She has been working on engineering education research projects for one and a half years, focusing on non-cognitive factors that impact engineering student success. She is currently working on her M.A. thesis on Beliefs on Depression.Mr. John Hollander, James Madison UniversityDr. Jesse Pappas, James Madison UniversityDr. Olga Pierrakos, James Madison University OLGA PIERRAKOS is an associate professor and
bestatistically valid and resulting data provide a groundbreaking view of mechanical engineeringeducation.In a broad-brush summary of the Vision 2030 survey data, the industry supervisors’ four greatestperceptions of weakness are worth highlighting. These four were focused on engineeringpractice—how devices are made and how they work, communication within diverse engineeringteams and with stakeholders in the organization, engineering codes and standards, and a systemsperspective. Notably, early career engineers judged their greatest weaknesses as practicalexperience, project management, knowledge of business processes and engineering codes andstandards.2 Many of these perceptions of weakness point unmistakably to a lack of emphasis ontranslating
streamlined andredesigned, it was desirable for each required course to “pull more weight” by delivering morevalue to students. Second, we wanted to “set the stage” for what was to come: both to providefoundational technical preparation in CAD, design, and analysis, and to establish studentexpectations of engineering as a socio-technical enterprise. Third, as capstone and other designprojects became increasingly multidisciplinary, we hoped to develop a common foundation inthe design process, with students from all engineering majors (and any non-engineering studentswho choose to enroll in Introduction to Engineering) learning a common, shared language ofdesign.The redesigned course model for our institution’s Introduction to Engineering consists of
between student action less time for analysis of student learning. Faculty are oftenand focused feedback, students often make the same type of absorbed checking student data and have little time to add newerrors week after week. Additionally, engineering laboratories student experiences that might be important and relevant todo not typically use efficacious forms of teaching, such as industrial practice. This problem is shared by most science anddiscovery-methods or project-based learning [1]. technology curricula and delays integration of new topics andUnderstanding how people think and learn has forced a
report an increasing writtencommunication workload over time.33 If supervised properly, Wheeler and McDonald reportthat writing allows students to develop and use critical thinking skills.34 While engineeringprograms typically incorporate ill-defined problems for capstone projects—another recognized Page 24.674.4tool for developing critical thinking, writing for reflection will also help develop skills forproblem identification, analysis, metacognition and the formation of value judgements.30,35Snyder & Snyder suggest essay questions rather than simple recall to encourage criticalthinking.25In addition to promoting the development of
included where resources are most readily available:firstly, in freshman engineering, and again four years later, during a senior capstone course. Thisapproach, unfortunately, leaves discipline-specific technical courses in the second and third yearslargely absent of writing, leaving a gaping hole where writing would be most contextual, andreinforcing students’ notion that writing and engineering are separate and unrelated, and eventhat writing is less or even not important.The pilot work presented herein is part of our larger effort to develop, refine, and disseminateinstructor-friendly writing exercises that can be adopted in a wide range of technical courses,including large lecture format courses where writing is rarely included because of the
Page 24.147.7been followed by the development teams. These are waterfall model, rational unified process,“Vee” process model, spiral model, agile development, etc. Nowadays, the typical systemdevelopment industries have not been so great while they have to deliver the working systemapplication in time and within the budget. It is widely reported that among 80% of all systemdevelopment projects fail because of lack of end-user involvement, poor requirement analysis,unrealistic schedules, lack of change management, testing and inflexible and bloated processes[Cohn[7], Martin[24]]. In agile system development process addresses these issues that makesystem development processes more successful. Also, in the agile development process, aminimal
often helpful, they are included as a capstone and aretypically limited in scope.We sought to redesign this course, and in doing so we wished to embrace a broader definition of“biomaterial” with a focus on clinical practice and biological response in addition to materialsscience. We sought to include materials of biologic origin as well as exogenous materials. Wealso wanted students to synthesize knowledge ranging from chemical properties to the immuneresponse to understand how clinical problems are solved (or often caused) by a variety ofmaterials. Thus our course objectives included: 1. Knowing and comprehending how biomaterials of natural and synthetic origins interact with and are recognized by cells; 2. Analyzing how the physical
Paper ID #9114Efficiency Measure for Colleges of EngineeringDr. Don E. Malzahn, Wichita State University Don E. Malzahn is Professor of Industrial and Manufacturing Engineering at Wichita State University. He received his BS, MS, and PhD degrees from Oklahoma State University. In his 40-year teaching career, he has taught a wide range of Industrial Engineering courses and currently directs the department’s capstone design experience. His research interests are in systems engineering, decision analysis, and engineering education.Dr. Lawrence E. Whitman, Wichita State University Lawrence E. Whitman is Associate Dean of
educational institutions and industry. He also is the Principal Investigator for Project TEAM: Tech-nician Education in Additive Manufacturing. He has served on numerous community based and collegeadvisory committees and has held faculty and administrative positions at several community and technicalcolleges in the areas of Career Development, Workforce Development, Industry Liaison, Internships andCooperative Education, and grant management. Page 24.789.2 c American Society for Engineering Education, 2014 INTEGRATION OF MATERIALS INSTRUCTION IN THE FIELD OF MANUFACTURINGAbstractThis
those activities are properly designed.BYOD in the Measurements and Analysis CourseMeasurements and Analysis with Thermal Science Application is a required junior level coursefor mechanical engineers at Northeastern University. The course consists of three lectures andone lab section per week. It covers topics such as statistical data analysis, experimental design,and measurement of engineering quantities such as pressure, temperature, strain, fluid flow, andheat transfer. Seven lab experiments are performed in teams of 3-4 students during the course ofthe term. Each team is also required to do a term project in which they design, execute, andreport on a measurement experiment of their choosing. These projects have ranged frommeasurements of
students build the instruments at the end of the semesterand prepare for a day out with the SeaPerch ROVs. The success of the outreach competition has beenoverwhelming and the experience our undergraduates have received has been invaluable to their success intheir senior capstone projects as well as in their job searches. Although we are just ending our second year of the implementation (this year we taught anadditional 250 students), we had over 450 students from 15 schools use some of the ROV curriculum wedeveloped to learn about STEM, and then design and build ROVs, and later use those ROVs in the secondUtah ROV Competition. Local media and STEM companies, in addition to the students, parents, teachers
Second, recommender systems and collaborative filteringstudy had left college entirely within 5 years, while 55% had systems typically do not consider uncertainty of the outcomesof advising actions or the potential long-term effects of this current state to a user-defined goal (e.g., graduation or passinguncertainty. a particular “capstone” course) and presents a sentence in the The notion of explaining why a particular course has been following form:recommended is unlikely to be foreign to experienced Past students have taken Software Engineering
practices and intersections of motivation and learning strategiesDr. Marie C Paretti, Virginia Tech Marie C. Paretti is an Associate Professor of Engineering Education at Virginia Tech, where she co- directs the Virginia Tech Engineering Communications Center (VTECC). Her research focuses on com- munication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and is co-PI on numerous NSF grants exploring com- munication, design, and identity in engineering. Drawing on theories of situated learning and identity development, her work
motivate a student to want to be precise in a variety oftopics. It is not without significance that several engineering educators have in recent yearscalled on their colleagues to take note of what happens in primary (elementary) teaching [17].There has also been widespread recognition among engineering educators in the US that theway in which freshman courses are designed has a powerful influence on the motivation ofstudents to remain in engineering [18]. The initial stages of programs inengineering/technological literacy however short or long need to be oriented toward a stageof romance. At the other end of degree programs there is the hope that capstone projectsprovide the generalisation that is necessary. The project method is of course
from the criticaland sometimes-subtle dimensions of social justice.5 Design cases that involve, for example,“design for the other 90%”6 or designing for people with disabilities redirect attention toquestions of design for social justice. This paper identifies and briefly describes four forms ofdesign: design for technology, HCD for users, HDC for communities, and design for socialjustice. The paper explores how social justice has been enacted—or neglected—in specificdesign contexts within engineering education, and how it can be further integrated in each ofthese forms of design education.This paper is part of a broader project to integrate social justice across three components ofengineering curricula—engineering design, engineering sciences
. degree in Engineering Education from Purdue University in 2013, M.S. degree in Biomedical En- gineering from Purdue University in 2009, and B.S. degree in Material Science and Engineering from Tsinghua University in China in 2007. Her research interests focus on educational studies that can help improve teaching, learning, and educational policy decision makings using both quantitative and qual- itative research methods. Her current research project in National Center for Engineering Pathways to Innovation (Epicenter) focuses on measuring engineering students’ entrepreneurial interests and related individual characteristics. Her Ph.D. dissertation involved using statistical modeling methods to explain and predict
Paper ID #10445Characterizing and Addressing Student Learning Issues and Misconceptions(SLIM) with Muddiest Point Reflections and Fast Formative FeedbackProf. Stephen J Krause, Arizona State University Stephen J. Krause is professor in the Materials Program in the Fulton School of Engineering at Arizona State University. He teaches in the areas of bridging engineering and education, capstone design, and introductory materials science and engineering. His research interests include strategies for web-based teaching and learning, misconceptions and their repair, and role of formative feedback on conceptual change. He has co
billioncompanies spend annually on diversity programs to create opportunity and inclusion strategiesfor minority groups5,6, including black engineers. Organizations typically enter into diversityprograms for one of two reasons: legal obligation or fairness4. There are many case studies ofsuccessful organizational diversity initiatives, and multi-organization case studies aswell13,45,48,49,50,51,52,53,54. Organizational diversity efforts may manifest themselves in trainingprograms and employee feedback47; as components of performance evaluations, in the form ofinclusion projects, as social networking, as the responsibility of management, in the form ofmentoring systems, and in affinity groups45