-12students have less exposure to electrical engineering (EE) than to many other STEM subjects.Within EE, the focus is often on introducing students to robotics or electronics, such as electricalcircuits, microprocessor programming and system integration (e.g., [1] - [3]). However, EE spansa much broader spectrum. The topics of communications and networking are often not presentedto high school students at all, and students are unaware of the fascinating challenges connectedwith careers in this direction.The current pandemic, entailing remote education, offers a unique opportunity to teachcommunications and networking. Remote delivery platforms such as Zoom can be leveraged toillustrate communications and networking concepts in new interactive ways
currently co-PI on three NSF-funded projects in engineering and computer science education, including a Revolutionizing Engineering Departments project. She was selected as a National Academy of Educa- tion / Spencer Postdoctoral Fellow and a 2018 NSF CAREER awardee in engineering education research. Dr. Svihla studies learning in authentic, real world conditions, specifically on design learning, in which she studies engineers designing devices, scientists designing investigations, teachers designing learning experiences and students designing to learn.Ms. Madalyn Wilson-Fetrow, University of New MexicoDr. Pil Kang, University of New Mexico Sung ”Pil” Kang is an assistant professor at the University of New Mexico. His
, University of Texas at Austin Maura Borrego is Director of the Center for Engineering Education and Professor of Mechanical Engi- neering and STEM Education at the University of Texas at Austin. Dr. Borrego is Senior Associate Editor for Journal of Women and Minorities in Science and Engineering. She previously served as Deputy Edi- tor for Journal of Engineering Education, a Program Director at the National Science Foundation, on the board of the American Society for Engineering Education, and as an associate dean and director of in- terdisciplinary graduate programs. Her research awards include U.S. Presidential Early Career Award for Scientists and Engineers (PECASE), a National Science Foundation CAREER award, and two
developed. Thelearning is deductive only and provides no context for students on why they are learning thematerial or how it will apply to their future engineering careers [1]. Many pedagogical tools thataim to establish connections between the engineering curriculum and industry practices havebeen investigated and implemented with varying degrees of success, such as project basedlearning (PBL) [2,3] competency based learning (CBL) [4], and inductive teaching [1]. However,adjustments to the curriculum to support these alternate pedagogical tools may still overlook theformat of the corresponding assessment items. Assessment techniques that have not beendesigned specifically to complement the course remain in a generic format that is only relevantto
introduce students to foundational 8concepts and career pathways in the areas of kinesiology and engineering.” Another program to adestination in Asia describes a visiting institution: “if you want to study engineering in[BLINDED COUNTRY], [BLINDED UNIVERSITY] will be the best destination, with severalprograms highly ranked worldwide.”Service LearningPrograms with a service-learning focus were tied to community projects in host communitiesabroad. Service-Learning includes activities or approaches of students involved in communityprojects while abroad as part of the learning experience. This category included building bridges,wells, and other water and
, Technical University of Denmark Anna Friesel is Professor at the Center for Electro-technology, DTU Diplom - Technical University of Denmark, Campus Ballerup. She is also the president of the EAEEIE - European Association for Educa- tion in Electrical and Information Engineering, which is a European non-profit organization, with mem- bers from nearly seventy European Universities, most of them teaching in the area of Electrical and In- formation Engineering (EIE). Anna Friesel is a member of the IEEE Educational Activities Board (EAB) Faculty Resources Committee (FRC). The mission of the EAB FRC is ”to promote the continued evo- lution of engineering education and the career enhancement of Engineering, Computing and
, mathematics, and computer science (STEM+CS) disciplines andunderscored the importance of incorporating real-world problems (Johnson et al., 2020),engaging in practices and solving problems similar to disciplinary professionals (e.g., Barth etal., 2017), making STEM+CS meaningful to students (i.e., Guzey et al., 2016), and offeringconnections between school contexts and possible STEM+CS careers (i.e., Roehrig et al., 2012).However, very few studies investigate how these STEM+CS concepts and practices are enactedin inclusive classrooms with students with identified disabilities or individualized educationalplans (IEPs). Students with disabilities are often ignored in STEM+CS education research (e.g.,Villanueva et al., 2012), and science contexts are
participants to report these findings. The remainder of theanalyses focused on gender.Similar rates of persistence existed for women and men, even though when they began theprogram there were statistically significant difference between mean scale scores for freshmenwomen and men on some measures of self-efficacy. For the Self-Efficacy Scale II, t(66) = 2.63,p = .011; Career Success Scale, t(66) = 3.03, p = .004, and Math Scale t(66) = 2.49, p = .015,men averaged higher scores than women (see Table 2 for averages). Although men scored higherthan women on the Self-Efficacy I Scale and Coping Self-Efficacy Scale, these results were notsignificantly different. Women and men scored similarly on the Inclusion Scale. The means onself-efficacy scales at the
kinds of organizational changes are needed at the institutional level to betterincorporate students both into their university and the organizational change process, students’perceptions of their own position and role must be known and understood. The purpose of thisqualitative investigation is to investigate how first- and second-year engineering students at alarge public Mid-Atlantic university describe their position and role within their university andprogram. Data for this study are drawn from semi-structured interviews conducted with tenstudents in Chemical Engineering. This selection of students from each of the first two years oftheir undergraduate careers provides a means for comparing how students’ views vary as theygather more
Paper ID #28510The Engineer of 2020 as of 2020Dr. Brock E. Barry P.E., U.S. Military Academy Dr. Brock E. Barry, P.E. is Professor of Engineering Education in the Department of Civil & Mechanical Engineering at The United States Military Academy, West Point, New York. Dr. Barry holds a Bachelor of Science degree from Rochester Institute of Technology, a Master of Science degree from University of Colorado at Boulder, and a PhD from Purdue University. Prior to pursuing a career in academics, Dr. Barry spent 10-years as a senior geotechnical engineer and project manager on projects through- out the United States
they can develop the knowledge, skills, and relationships needed to be aresearch engineer. Another initiative seeks to develop a Research Engineer Network (REN) ofindividuals that will impart skills and mentoring to graduate students, that may not available to them fromtheir own major professor and her/his research group. The network will be composed of graduatestudents, select major professors, select faculty from R1 universities, and representatives from corporateresearch and federal research laboratories. The REN will have three tracks of activities: ResearchProgression Skills (REN-RPS), Research Networking Skills (REN-RNS), and Career Preview andPreparation (REN-CPP). Each track of activities will be offered in Fall and Spring. The REN
classroom posters.Research DesignOur research design is situated in a larger research project focused on evaluating SEEK’s successat influencing STEM-related academic and career identity, conceptual knowledge, andinterpersonal and intrapersonal skills (Cardella et al., 2019). To address this broad objective, weapplied the logic of an input-environment-outcome framework to organize data collection andanalysis. In addition to considering relationships between children's background characteristicsand experiences within SEEK with their post-camp outcomes, the framework emphasizes theinfluence of organizational contexts on shaping children’s learning experiences. We consideredthree major components of organizational context in comparing sites: 1) Local
Xinrui (Rose) Xu graduated from the School of Engineering Education at Purdue University. She currently works at the Engineering Education Research Center of Huazhong University of Science and Technology. Prior to her current role, she used to serve as a senior career consultant at the Purdue University Center for Career Opportunities. She received a bachelor’s degree in electrical engineering and a Master’s degree in counseling and counselor education. Her research interests include student career development and pathways, student major choice, diversity in engineering, and student mental health.Dr. Douglas B. Samuel, Purdue University, West Lafayette My research focuses on the development of dimensional trait models of
helpthemselves to feel more motivated, to cope with their stress, and to thrive in the college setting.A major focus of our program is encouraging students to develop a growth mindset rather than afixed mindset.28 We feel this motivational aspect is especially important for engineering studentsto understand and integrate into their learning given their prior experiences in academic settings.Most of these students have been highly successful throughout their educational careers, and theyoften believe this success comes from their innate superior intelligence rather than from their hardwork, use of effective strategies, and support from their family, peers, and teachers. Then, whenthey struggle or even fail for the first time in their college Engineering
]. Research-based teaching practices. (RBTPs)encompass a long list of instructional practices that have been shown through research to be effectivein improving student achievement, engagement and persistence in STEM fields. These RBTPs include“the use of cooperative learning; problem-based learning; peer-led team learning; process-oriented,guided inquiry learning; and project-based learning over lecture-based teaching” [15]. Endeavors tofind solutions to complex societal problems often require collaboration between industry andacademia. This can be further formalized and integrated into the engineering classroom to providenew ideas for industry, incubate entrepreneurial interests in students, and provide a guaranteedpathway to an engineering career
enables her to combine a deep understanding of scientific principles with the ability to tell a compelling story to communicate the scientific and potential societal impact of individual research projects. Her targeted campaigns raise the perceived stature of the organization and lead to successful institutional fundraising. After graduating from Williams College with a bachelor’s degree in chemistry and French, Thuy earned a Ph.D. in chemistry from the University of Hawaii. In her early career, she was a research scientist at Pacific Northwest National Laboratory and held management positions in several engineering firms, including CH2M HILL, Lockheed Martin, and Los Alamos Technical Associates. While pursuing her
11 software. We utilized a qualitative phenomenologicalapproach to conduct a comparative analysis of the experiences of African American Engineeringstudents in the two types of institutions. A phenomenological approach describes what researchparticipants have experienced, how they experienced it, and the meaning they associate to theirexperiences [30]. Students shared their experiences and their perceptions of their institutions andtheir views on issues related to race, ethnicity, identity and career aspirations.Codes were developed in accordance with the literature review. Next we reviewed eachtranscript to identify thematic categories (e.g., awareness prejudice and discrimination, collectiveexperience of prejudice and discrimination
3.88 Clarify whether graduate school would be a good choice for me 4.15 3.69 -0.46 Clarify whether I wanted to pursue a STEM research career 3.79 4.06 0.27 Work more closely with a particular faculty member 3.58 3.75 0.17 Get good letters of recommendation 4.00 3.59 -0.41 Have a good intellectual challenge 4.55 4.34 -0.20 Read and understand a scientific report 4.03 Write a scientific report 3.97 Ask good questions related to the scientific process 3.97 Set up a scientific experiment
this assignment was to help students reflect on their experiences as a whole andidentify the knowledge and skills they developed that could transfer to their future engineeringeducation and career. The program’s alumni are often able to use this information in jobinterviews in the summer or fall after their return and find that being able to talk about theirexperience coherently gives them an advantage over other sophomores applying for internships.In addition to being a longer assignment for students, data analysis was more time consuming forthis assessment. We coded essays for the 2016 cohort and identified several common themes inwhat students said they learned from the program, shown in Table 7. One key take-away fromour analysis is that a
duringfreshman year, or the disaster-turn-to-awesome high school debate team experience, a sense of “Ican and I did it” was evident. Nickie shared, “I kind of had this idea that I wanted to dosomething … really, really technically difficult. …. I feel that I’m always trying to prove myselfthat I can do it.” While the actual “hands-on experiences” was somewhat limited for Nickiebefore her college years, she was clear on the essence of a career she wanted to pursue. Sheasked herself “What’s going to have the most impact?” Her answer was STEM. She noted, “Iwas just so incredibly attracted to the idea of making something … of having a final product.”Her rationale was “… what is what I am doing, at the end of the day, going to give back …otherwise what is
. Jesiek is an Associate Professor in the Schools of Engineering Education and Electrical and Computer Engineering at Purdue University. He also leads the Global Engineering Education Collabora- tory (GEEC) research group, and is the recipient of an NSF CAREER award to study boundary-spanning roles and competencies among early career engineers. He holds a B.S. in Electrical Engineering from Michigan Tech and M.S. and Ph.D. degrees in Science and Technology Studies (STS) from Virginia Tech. Dr. Jesiek draws on expertise from engineering, computing, and the social sciences to advance under- standing of geographic, disciplinary, and historical variations in engineering education and practice. c
discussion session which served as awrap up for the academic year long JTFD project including fall workshops and spring discussionsessions. As with the previous set of data from the six discussion sessions, the average scores arerelatively high, ranging from 4.4 to 4.8. Additionally, 96% of faculty agreed or strongly agreedthat “The JTFD project has been successful in creating a Community of Practice which supportsinnovation, implementation, and open dialogue between colleagues” and 100% of faculty agreedor strongly agreed that “The tools, strategies, and interaction I experienced throughout the JTFDproject will be of value to my future instructional practice and career success.” Thus, the wrap upsurvey demonstrates that overall impact and value to
advocates for change in their future careers. Hatchery Units are onecredit courses that are designed to address gaps in students’ technical knowledge identified bylocal industry, infuse ethics and social justice in the undergraduate computer science curriculum,and build communities of practice while providing a more streamlined integration experience fortransfer students to the program. Guided by Rawl’s [33] theory of social justice, the team willwork with students and faculty to create an environment that is welcoming and supportive for allundergraduate CS students and encourage graduates of the program to work to promote thesevalues as future computer science professionals. The development of these values will bepromoted by building communities
UK. He started his career in the UK as the Senior Research Assistant at the SERC Engineering Design Centre. He joined Brunel University in 1995 where he worked for 18 years before joining United Arab Emirates University in August 2011. During his stay at Brunel he has worked with many British industries. Dr Sivaloganathan is a keen researcher in Design and was the Convenor for the International Engineering Design Conferences in 1998 and 2000. He has been a regular participant of the ASEE annual conference during the past few years. He has published more than 85 papers in reputed journals and conferences.Dr. Essam K. Zaneldin P.E., United Arab Emirates University Dr Essam Zaneldin earned his PhD in 2000 from the
on multidisciplinaryteams are required to attend all training sessions with their teammates.Our engineering program utilizes team-based project learning in several course beginningfreshman year. In these courses, the engineering professors introduce the concepts of teamwork,collaboration and conflict resolution. These concepts are reinforced at several points throughoutengineering students’ academic career in other lab courses and even in some lecture courses, butthey are not the focus of those courses.So for capstone we decided to focus on professional skills almost exclusively during lecture, andbegan bringing in outside experts to lecture on different topics related to professional skills.While we brought in experts on project management
activities are detailed below:1. February 24th- 2016, Capital Area Science and Engineering Fair Volunteering2. February 26th-2016, Capital Area Science and Engineering - Award Ceremony3. March 9th-2016, STEM Career Launch Volunteering4. March 24th-2016, NSF STEM club talk on storm water runoff and pollutants in water supplies.In addition to the above events, the NSF-STEM club officers participated in CentralPennsylvania food bank as a community service and organized a fund raising event at April 28,2016, where newer members (mentees) and older club members (mentors) participated. Below,in Figure, 1 is the flyer that they used. Fig 1: Flyer used in one of the NSF STEM club fundraising activitiesThe impact of the NSF STEM
students at Macalester College as one contributionto countering this blind spot. In developing this course, our primary interest was to give studentsat an early stage in their academic experience an introduction to engineering, whether they cameto college with the idea of possibly pursuing a career in engineering or whether they wanted toget a deeper understanding of the influence of engineering on the world in which they live. Forthat reason our orientation in this course was different from the orientation found in Bucciarelli’sand Drew’s proposal for integrating the liberal arts with engineering (2015). As we were notprimarily interested in preparing future engineers, our course was less technically(mathematically) focused. Our course was also
in many educational institutions. The purpose of thismixed method study was two-fold. First, the researchers examined faculty member’s reactions toworking in a culturally diverse environment. Secondly, the researchers wanted to uncover bestpractices or strategies that might improve cultural awareness in workforce development in termsof navigating daily life within an educational institution. This study delved into the experiencesfaculty members reported having in their workplace. The study involved 224 faculty membersacross various departments and career statuses working at a public coeducational researchinstitution in the United States of America. The survey and interview responses to apredetermined set of questions were analyzed in order
student learning. Tamara Moore received an NSF Early CAREER award in 2010 and a Presidential Early Career Award for Scientists and Engineers (PECASE) in 2012.Siddika Selcen Guzey, Purdue University, West Lafayette (College of Engineering) Dr. Guzey is an assistant professor of science education at Purdue University. Her research and teaching focus on integrated STEM Education.Mr. Kyle Stephen Whipple, University of Minnesota c American Society for Engineering Education, 2017 Middle School Students’ Engineering Discussions: What Initiates Evidence-Based Reasoning? (Fundamental)Introduction and literature reviewAs part of an effort to remain internationally competitive, the United
. Future work implies the application of a quantitativequestionnaire to discuss national and international implications.Introduction Over the last two decades, ABET has become a major change agent in engineeringeducation worldwide. In 1996, ABET’s Board of Directors shifted its emphasis on outcomesrather than inputs by adopting the widely known accreditation criteria EC2000. Criterion 3specified five technical and six professional skills that engineering graduates must face thechallenge of international competitiveness.1 Lattuca, Terenzini and Volkwein (2006) documentedthe impact of the engineering criteria EC2000 on engineering programs2. Schools of Engineeringworldwide have modified their curriculums to reinforce career preparation and