. Food and its availability is of major concern in various regions of the world,especially in the underdeveloped communities. Furthermore if the water is used downstream forfarming, there might be additional concerns. This also impacts the quality and life of aquaticcreatures (especially fish) and wildlife. The water samples are taken at various locations of theriver. They are then shipped to the college in the USA. The laboratory experiments are performedto analyze each sample at this college. The laboratory results are analyzed and conclusions aredrawn based on the data from the lab experiments.Introduction:Five total sites were considered, three sets of samples were obtained from the Shanghai tributaryof the Yangtze River from each of the
: • Curriculum Enhancement Activities (CEA) – Hands-on, inquiry-based K-12 STEM curricula o The outreach program at ECSU utilizes current existing grade appropriate CEAs adopted through well-established NASA STEM curriculum and integrate 3D printing, sensor-based measurement modules, and mini quadcopter UAV design to further enhance the learning experience. Students participating in the program completed a total of thirty-six (36) to Forty (40) hours of hands-on learning per year. • Aerospace Educational Laboratory (AEL) o The AEL consists of fifteen computerized lab stations loaded with CEAs with specific emphasis on the NASA Science and
education.Dr. Peter C Nelson, University of Illinois at Chicago Peter Nelson was appointed Dean of the University of Illinois at Chicago’s (UIC) College of Engineering in July of 2008. Prior to assuming his deanship, Professor Nelson was head of the UIC Department of Computer Science. In 1991, Professor Nelson founded UIC’s Artificial Intelligence Laboratory, which specializes in applied intelligence systems projects in fields such as transportation, mobile health, man- ufacturing, bioinformatics and e-mail spam countermeasures. Professor Nelson has published over 80 scientific peer reviewed papers and has been the principal investigator on over $40 million in research grants and contracts on issues of importance
a learning community that is focusing on the Computer Aided Drafting andDesign and Manufacturing Processes courses.At Farmingdale State College, Computer Aided Drafting and Design (CADD) is a requiredfreshman course for Mechanical Engineering Technology AAS and BS and ManufacturingEngineering Technology BS programs. It is a 3-credit and 4-contact hour course. The courseconsists of a lecture component and a laboratory component. In the lecture component, theinstructor introduces the class materials to the students. The students will then practice theirCADD skills in the laboratory component. The course teaches students technical drawings, 2Dcomputer aided drafting, and 3D modeling. These topics are closely related. The course isessential for
Paper ID #15487The Charles Sturt University Model - Reflections on Fast-track Implementa-tionProf. Euan Lindsay, Charles Sturt University Professor Euan Lindsay is a Mechatronic engineer, a discipline that integrates computers, electronics and physical hardware. Prof Lindsay’s PhD investigated whether remote and simulated access alternatives to the traditional in-person laboratory experience could provide the same learning outcomes for students. Prof Lindsay’s work in Remote and Virtual laboratory classes has shown that there are significant differ- ences not only in students’ learning outcomes but also in their
Technology had on theparticipants’ career paths. Over the nine years, there have been 131 undergraduate students whoparticipated. Ninety nine (76%) of these students were supported via funding from the NationalScience Foundation Research Experiences for Undergraduates program. The other 32 (24%)were supported through institutional funds. More than half of the students (56.5%) were female,26.7% of the students were from underrepresented groups, and 52.7% students without previousresearch experience. The undergraduate research program understudy is a 10-week engineeringresearch project working in research laboratories at the University or a collaborating MedicalSchool. A tiered mentoring structure was developed within the participating laboratories
Paper ID #12018A Blocks-based Visual Environment to Teach Robot-Programming to K-12StudentsMr. Raghavender Goud yadagiri, NYU Polytechnic School of Engineering Raghavender Goud Yadagiri received his B.Tech degree in Electronics and Communication Engineering from JNTUH, Hyderabad, India, in 2011. After obtaining his B.Tech he worked as an Embedded As- sociate at Thinklabs Technosolutions Pvt. Ltd for two years. He is currently pursuing a M.S degree in Electrical and Computer Engineering with specialization in Computer Engineering. Raghavender con- ducts research in the Mechatronics and Controls Laboratory at NYU Polytechnic
Paper ID #13186Enhancing Accessibility of Engineering Lectures for Deaf & Hard of Hearing(DHH): Real-time Tracking Text Displays (RTTD) in ClassroomsMr. Gary W Behm, Rochester Institute of Technology (CAST) Gary W. Behm, Assistant Professor of Engineering Studies Department, and Director of NTID Center on Access Technology Innovation Laboratory, National Technical Institute for the Deaf, Rochester Institute of Technology. Gary has been teaching and directing the Center on Access Technology Innovation Laboratory at NTID for five years. He is a deaf engineer who retired from IBM after serving for 30 years. He is a
Paper ID #11975Closing Achievement Gaps using the Green-BIM Teaching Method in Con-struction Education CurriculumProf. Jin-Lee Kim P.E., California State University, Long Beach Dr. Jin-Lee Kim, Ph.D., P.E., LEED AP BD+C, USGBC Faculty, is an Associate Professor of the De- partment of Civil Engineering and Construction Engineering Management at California State University Long Beach. He is a director of Green Building Information Modeling laboratory. His research interests include advanced construction scheduling techniques for optimization, green buildings, building informa- tion modeling, cost estimating methods
mill; experimental setup on adesktop with programmable syringe pumps, sensors, and CCD and thermal infrared camera,experimentation, and analysis of images. We study concurrent and countercurrent heat exchangers,various active and passive mixers, heats of mixing between alcohols and aqueous salt solutions, andacid-base neutralization reactions. These laboratory projects provide instructive and accessiblehands-on experimentation, at levels ranging from intuitive and visual to more analytical treatments,in subject areas of fluid mechanics, heat transfer, reaction engineering, image processing andmachine vision, engineering modeling, and rapid prototyping. We emphasize skills and conceptsgained for their relevancy to energy efficiency
thespring semester of their final year. The course is comprised of a 2-credit-hour course lecture anda 1-credit laboratory. Before spring semester of 2017, the course followed a more traditionalstructure. Readings were assigned out of a manufacturing textbook, the manufacturing processeswere described during traditional academic lectures, and tests were proctored to assess studentlearning. The 1-credit-hour lab was used to tour five local manufacturing facilities throughoutthe semester. A comparison between the 2016 and 2017 course structure is shown in Figure 1.Figure 1: Comparative course structure between the 2016 and 2017 version of the course.During the spring 2017 semester, 14 senior-level, male mechanical engineering students wereenrolled in
Dr. Blake Everett Johnson received his doctorate in Theoretical and Applied Mechanics at the University of Illinois at Urbana-Champaign in 2012. Dr. Johnson now works as a lecturer and lab manager in the De- partment of Mechanical Science and Engineering at the University of Illinois. While remaining interested and active in the field of experimental fluid mechanics, he has chosen to spend most of his professional energy on improving the teaching of thermo/fluids laboratory courses through the development of en- gaging and intellectually-stimulating laboratory exercises, as well as improving introductory mechanics education and design courses in the MechSE department.Dr. Matthew D. Goodman, University of Illinois
discussion rent sessions sections, managing laboratory classes, or handling office hours. 55 min each In the second session, participants choose one of the following topics: teaching problem solving, grading, or handling office hours. Undergraduate Teaching Orientation Graduate Teaching Orientation Practice In small groups (5-7), participants take turns delivering a five-minute explanation on a Teaching topic of their choice. Peers and one trained facilitator act as students during the lesson, 2 hrs then provide written and oral feedback on the teaching.Table 1: Engineering teaching orientations during the Fall of 2017.As seen in Table 1, the new instructor
1993, he has taught courses and laboratories in engineering mechanics, design, and entrepreneurship. His other responsibilities include undergraduate academic advising, senior design project supervision, undergraduate research supervision, and graduate research supervision. Dr. Bucinell has advised the SAE Baja, SAE Formula, and projects related to the ASME Human Powered Vehicle project. Dr. Bucinell has directed the International Virtual Design Studio project that ran in collaboration with the Middle East Technical University in Ankara, Turkey; Altim University in Ankara, Turkey; and ESIGELEC in Rouen, France. He also founded a chapter of Engineers Without Boarders at Union College and has traveled to Boru Village
proposal shell’ which describes the problem from my working point of view.”[9].Mentors of the undergraduate students in some research laboratories:Undergraduates in engineering are not just confined in class lectures and teaching labs. They enjoysummer internship in several national research and development (R & D) laboratories, like Sandia,Lawrence Livermore, Lawrence Berkeley, etc. spread out throughout USA. Dr. Jeffrey Estes of PacificNorthwest National Laboratory, notes, “Connecting students to the world of science and technology thatexists beyond the academic classroom holds great potential for helping the students decide on and pursuea career pathway. Whether that path leads to a career in research, teaching, business, or a
Objectives DefinedThe five students soon asked: If samples could be taken more often than the utility’s mandatedfifteen minute intervals, would the demand numbers routinely be less that the utility claimed? Ifso, could the university then negotiate the demand piece of its electric power bill to be less?Concurrently, the Facilities Director asked the five students to find out 1) how accurate is thepublic electrical utility’s demand and energy data? and 2) How can gateway metering bestsupport his long-term plan to set up an emergency microgrid for the university? Answering allthese questions required advanced technology that he lacked and had been unable to afford.Schweitzer Engineering Laboratories (SEL), the world’s leader in electric power
Marshall University.The main objective of the research project was to investigate the effects of carbon nanomaterialson the mechanical properties and durability of cement mortar. The non-engineering major wasinvolved in manufacturing and testing cement mortar cubes with different concentrations ofcarbon nanotubes and graphene using an ASTM standardized procedure. The paper reflects onthe benefits and challenges of conducting quantitative research in an engineering field, such aslearning how to use laboratory equipment, analyze data, and write technical reports. The paperalso discusses how the interdisciplinary nature of the project helped to broaden the perspectiveand enhance the problem-solving abilities of the non-engineering major, who applied
has developed surface preferential approaches for nucleation and crystallisation of biological and complex organic molecules. More recently, he has worked as a Research Associate investigating the role of surface properties on particle-particle interaction and developed approaches for decoupling contribution of different surface attributes on powder cohesion. In 2012, as recognition to his contributions to Undergraduate laboratory teaching, he was been nominated for the Graduate Teaching Assistant Awards for the Faculty of Engineering. Umang currently has a role in leading the operation and innovation of the teaching laboratories and he manages Graduate Teaching Assistants for the Department of Chemical Engineering
challenges of university-owned control laboratories has sparkedconsiderable interest in student-owned control experiments 8,9,10 . The focus on student-ownedcontrol experiments has lead to many novel platforms such a small robotic vehicle with a custommicro-controller board 11 and a 3D printed experiment for balancing a ball on a plate 12 . Otherinstructors have used extensive simulations 13 and haptics 14 to enrich dynamic systems andcontrol courses.The abundance of online videos on control-related topics along with the relative ease with whichinstructors can create and distribute their own lecture videos has brought into question how to bestuse face-to-face instruction time. One answer to this question is to "flip" the course by having thestudents
Paper ID #21117High-Fidelity Digitized Assessment of Heat Transfer Fundamentals using aTiered Delivery StrategyDr. Tian Tian, University of Central Florida Tian Tian is an Associate Lecturer of Mechanical and Aerospace Engineering at the University of Central Florida, which she joined in 2013. She has been frequently teaching undergraduate lecture and laboratory components of Heat Transfer, Thermodynamics and Fluid Mechanics. Her educational research interests focus on project-based learning, online learning, and the digitization of STEM assessments. She received the Teaching Incentive Award, Excellence in Undergraduate
have access to literature beforehand and receive a lecture prior to the flight perform better than thosethat only review the literature or only receive a lecture before the simulation. Also, the efficacy of the hands-on learning in a laboratory environment is discussed.Keywords: Flight Training, Simulation, Hands-on Learning, Laboratory learning, Retention 1. IntroductionIn this IRB-approved (Institutional Review Board) study, student learning and retention is assessedusing a motion-based fixed-wing flight simulator. Students are given introduction to the principlesof flight. Then they fly the aircraft flight simulator and are asked to complete a pre-defined mission.Points are given for successfully completing several legs of the mission
the Science and Engineering Research Council at the University of Liverpool, UK. Dr. Albin conducted research on Si and GaAs electronic devices and semiconductor lasers at the research laboratories of GEC and ITT and published numerous articles in this field. He was a professor of Electrical and Computer Engineering at Dominion University. He has advised 14 PhD and 19 MS students. He received numerous awards: Doctoral Mentor Award 2010; Excellence in Teaching Award 2009; Most Inspiring Faculty Award 2008; Excellence in Research Award 2004; and Certificate of Recognition for Research - NASA, 1994. He is a Senior Member of the IEEE and a Member of the Electrochemical Society.Prof. Petru Andrei, Florida A&M
, which they tend to speak about morethan others. We also probe more deeply into how and why the most effective teams or groupswork for students. In a mixed methods approach, our quantitative (survey) data first show whichacademic communities students participate in and how active they are in these communities. Ourqualitative data (interviews and focus groups) then explain how the most influential communitieswork for students. Our results show that while students reported participating at various levels,ranging from minimally to very active, in a broad range of academic groups available throughtheir home departments and colleges, most (53%) are active or very active in laboratory groupsand a large number (42%) are active or very active in
Zeeh1 1. Students, University of Southern Maine, Gorham, ME 2. U.S. Navy, former students, University of Southern Maine, Gorham, ME 3. Professors, University of Southern Maine, Gorham, MEProf. Daniel M Martinez, University of Southern Maine Dr. Daniel M. Martinez received his B.S. in Chemical Engineering at the University of Rochester in western New York. He continued there to pursue a Ph.D., and after qualifying for entry into the program left for NASA’s Goddard Space Flight Center in Maryland to conduct his graduate laboratory research. At Goddard he studied nucleation phenomenon, specifically vapor to particle conversion of metals in a gas evaporation condensation chamber. At the end of his Ph.D. work, Daniel became
did not have the background to know what STEM careers and fields even existed.Internships were immediately brought into the discussion but Dr. Berrett argued that studentswere not ready for internships. They needed a more closely monitored and supportiveenvironment. He promoted creating a Mentorship experience with a small group of students tosend them to the main Utah State University campus in Logan, Utah, to work side-by-side withexperts in STEM laboratory settings. Rather than leaving mentorships to chance or to individualstudents, he wanted to formalize the process. For American Indians and many minority groups,they do not have the confidence or contacts to make this important connection.THE MENTORSHIP PROJECT:To further students
districts across Ohio preparing students for STEM career and college endeavors.Larraine A. Kapka, Sinclair Community College Assistant Dean and Professor, Sinclair Community College MSME, MS Ind Mgt, PE (Ohio) Over 20 years industry experience 15 years higher education experience c American Society for Engineering Education, 2016 Virtual Online Tensile Strength Testing SimulationAbstractSupported through NSF-DUE, this TUES Type 1 project is 1) developing an open source,virtual, online tensile testing laboratory simulation; 2) conducting research to compare the costsand learning outcomes for using on-site, hands-on tensile testing equipment versus an onlinesimulation; 3) creating close industry
Paper ID #13037Mechatronics Experential Learning for Broadening Participation in Engi-neeringMr. Ashley Guy, University of Texas at Arlington Ashley Guy is a doctoral student with the Robotics, Biomechanics, and Dynamic Systems Laboratory at the University of Texas at Arlington. He holds B.S. degrees in both Biology and Mechanical Engineering and is currently pursuing his Ph.D. with Dr. Alan Bowling. His research includes micro- and nano-scale dynamics.Prof. Alan Bowling, University of Texas at ArlingtonProf. Panayiotis S. Shiakolas, University of Texas, Arlington
Mechanical Engineering at NYU Tandon School of Engineering (NYU Tandon), where he directs a Mechatronics and Control Laboratory, a Research Experience for Teachers Site in Mechatronics and Entrepreneurship, a GK-12 Fellows project, and a DR K-12 research project, all funded by NSF. He has held visiting positions with the Air Force Research Laboratories in Dayton, OH. His research interests include K-12 STEM education, mechatronics, robotics, and control system technology. Under Research Experience for Teachers Site and GK-12 Fellows programs, funded by NSF, and the Central Brooklyn STEM Initiative (CBSI), funded by six philanthropic foundations, he has con- ducted significant K-12 education, training, mentoring, and
well aware of these novel technologies, we need to update our curriculum andcourse design. In this paper, I present some laboratories (labs) that the students conducted as apart of a course project in the ubiquitous computing class. This course is an elective forundergraduate Computer and Information Sciences or Information technology students. Thestudents who take this course are either juniors or seniors. Covid-19 has taught us how remoteteaching is useful to ensure proper education during the time of the pandemic. This project aimsto design different lab modules that the students can conduct without purchasing hardware. Idesigned this course at the time of covid pandemic to ensure student learning and success in aneconomical way. I devised
, effectiveness, and pedagogical value ofstudent-generated stories in a fluid mechanics course part of the mechanical engineeringtechnology curriculum. This application, which addressed Accreditation Board for Engineeringand Technology (ABET)’s Criterion 3 and Criterion 5c, was implemented in a four-credit hour(ch) senior-level applied fluid mechanics course, with a 3ch lecture and 1ch laboratorycomponent. The course is the second in fluid mechanics’ sequence and covers topics likepipeline systems design, pump selection, flow of air in ducts, lift and drag, etc. The originalinstructional design used a blend of traditional in-class lectures and problem-based learningfocused on project-based and other laboratory exercises.To further improve the students