system for that project. Prof. Anderson was a participant in the first cohort of the NCWIT Pacesetters program, a program de- signed to recruit more women to the field of computer science and encourage them to pursue their careers in technology. As part of his Pacesetters efforts, Prof. Anderson led the charge to create a new BA in CS degree at CU that allows students in Arts and Sciences to earn a degree in computer science. This new degree program was first offered in Fall 2013 and had 240 students enroll during its first semester and now has more than 1200 majors five years later. He also organizes and hosts the annual NCWIT Colorado Aspirations in Computing Award for the past seven years. This award recognizes the
the Faculty of Engineering, Tel-Aviv University. c American Society for Engineering Education, 2020 Paper ID #30260Prof. Zoran Kostic, Electrical Engineering, Columbia University Zoran Kostic completed his Ph.D. in Electrical Engineering at the University of Rochester and his Dipl. Ing. degree at the University of Novi Sad. He spent most of his career in industry where he worked in research, product development and in leadership positions. Zoran’s expertise spans mobile data systems, wireless communications, signal processing, multimedia, system-on-chip development and applications of parallel
%,and 0.3% of tenured and tenure track science and engineering faculty, respectively. One statistical model showed that, even given exponential growth in the pool of Ph.D.graduates from URM groups, the composition of faculty would remain stagnant even through theyear 2080 [16]! Those truly invested in repairing the ‘leaky pipeline’ should question solutionswhich deflect the burden of underrepresentation onto persons from underrepresented groupsthemselves. We must instead shift attention to understanding why institutions are failing toattract and retain talent that already exists. In other words, we must question why URM Ph.D.graduates are pursuing careers outside of academia, in some cases leaving the professoriate to doso [18]. Are
bibliometrics.Christine Brodeur, Polytechnique Montr´eal Christine Brodeur holds a bachelor’s degree in education and science from McGill University, in Montr´eal. She taught high school for 6 years before enrolling at Universit´e de Montr´eal to complete a Master of Information Sciences. She has been working as a librarian at Polytechnique Montr´eal since 2013, doing a variety of tasks, with a focus on bibliometrics and teaching information literacy.Manon Du Ruisseau, Ecole Polytechnique de Montreal Manon Du Ruisseau has been working at the Polytechnique Montr´eal Library for more than 30 years. During the first years of her career, she worked as a library technician and since then she occupied various positions that allowed her to
understand issues of diversity and inclusion in engineering. Specifically, she investigates how language influences who engages in the technical fields. She was recently awarded the Stanford DARE fellowship. Globally, she is part of the Galapagos research-practice partnership that seeks to improve the teaching of science for underserved communities through education for sustainability. Before coming to Stanford, she was a bilingual educator at Plano ISD. In Plano, she served in the Gifted and Talented Advisory Committee and the Elementary Curriculum Design team. Prior to starting her career in education, Greses was a project manager for engineering programs funded by the European nonprofits in the Caribbean. She holds a
experience engineering as an evolving, creative, and interdisciplinary career that impacts global society and daily life. 2. Provide students with the opportunity to develop process-driven problem solving skills that recognize multiple alternatives and apply critical thinking to identify an effective solution. 3. Provide students with the opportunity to integrate math & science in an engineering context. 4. Create motivated & passionate engineering students by challenging them with authentic engineering problems across multiple disciplines. 5. Instill in our students the professional, personal & academic behaviors and common competencies needed to move to the next stage of their
education, advising and mentoring, students’ persistence, engineering career pathways, and school-to-work transition of new engineers. He holds a B.S. in Mechanical Engineering from University of Wisconsin-Milwaukee and a M.S. in Mechanical Engineering from Georgia Institute of Technology. Prior to beginning his doctoral studies, Hassan worked for five years at General Electric where he graduated from their Edison Engineer- ing Development Program (EEDP) and then worked as a gas turbine fleet management engineer. In addi- tion to his technical role, Hassan supported the recruiting, interview, and selection process of the EEDP Program, where he mentored interns, co-ops and Edison associates from the Middle East and Africa
loss of self-efficacy.13 Once a student loses confidence in their ability to perform a task, theytend to feel uncomfortable or out of place. Similarly, Tinto identified that the most important factorin a student’s academic performance is a measure that he termed “student commitment”. This is ameasure of the student’s ability to integrate themselves into the academic community.14,15 Whilethere have since been many studies examining other contributing factors, the underlying tone inall of the research is the student’s comfort, confidence, and motivation in their area of study.14–17 2.2. Student GenderThere exists an implicit bias that science, technology, engineering and mathematics (STEM) aremasculine career fields. Though women make up
campus SHAWN JORDAN, Ph.D. is an Associate Professor of engineering in the Ira A. Fulton Schools of En- gineering at Arizona State University. He teaches context-centered electrical engineering and embedded systems design courses, and studies the use of context in both K-12 and undergraduate engineering design education. He received his Ph.D. in Engineering Education (2010) and M.S./B.S. in Electrical and Com- puter Engineering from Purdue University. Dr. Jordan is PI on several NSF-funded projects related to design, including an NSF Early CAREER Award entitled ”CAREER: Engineering Design Across Navajo Culture, Community, and Society” and ”Might Young Makers be the Engineers of the Future?,” and is a Co-PI on the
’ understanding ofengineering as a possible career path and, at worst, fosters misconceptions about the nature ofengineering. Furthermore, treating engineering as a solely technical field may be particularlydetrimental to students from underrepresented communities and to women, groups for whichsocial concerns and community relationships are often of importance.Despite significant effort on the part of the engineering community, engaging future engineers inways that support their trajectories into engineering careers remains a substantial challenge forengineering education programs3. In particular, recruitment and retention of women and studentsfrom underrepresented minority populations have proven difficult to increase1.Recently, several scholars have
interest, identity, and career aspirations, gains in 21st century skills, and possiblelearning gains [6], [7]. Leveraging these environments requires curricula that are appropriate forthe OST setting. Such curricula can engage learners, respond to their backgrounds and interests,and connect with home and communities [8]. High-quality OST engineering curricula thus canenhance youth learning and engagement, and are important tools for OST educators. Recently,engineering curricula have been developed specifically for the OST community. To engage alllearners, it is important that engineering curricula provide opportunities for youth to activelyengage in the practices of engineering, to see relevancy, to collaborate, and to have opportunitiesto develop
using solar, then all of ourproblems are solved,” placing the importance on educating not just their immediate social circle,but society at large for a social good. A third opinion of note pointed to the possibility thatcontributing to the available knowledge online would also aid scientists who need to work inother fields and science students such as herself who could not find enough additional resourcesto help her learn the PV solar material at the start of the program.The three participants who valued communicating with scientists and PV engineering audiencesmore expressed that at this point in their career, establishing themselves among professionals andfocusing on their education was a higher priority than communicating with the public
50 students’ with diverse prior experiences. The threecategories of research process sophistication described in this paper will later be used tocharacterize the responses of all returning and direct pathway students in our study and betterunderstand how students’ past education, work, and other experiences relate to their engineeringresearch process. However, the applicability of such a classification scheme would likely extendto evaluating the work of engineering graduate students’ research sophistication or progress overtime more broadly.BackgroundResearch Skills. A major component of doctoral education is preparing students to beindependent researchers. There are a variety of research skills essential for career success inacademia
these challenges highlight the need to better preparetoday’s engineers with the intuition, skills and tools they need to tackle these problems. CharlesVest, 9 former president of National Academy of Engineering, asserts that engineering studentsprepared for professional careers in the year 2020 and beyond, “must be excited by their freshman year; must have an understanding of what engineers actually do; must write and communicate well; must appreciate and draw on the richness of American diversity; must think clearly about ethics and social responsibility; must be adept at product development and high-quality manufacturing; must know how to merge the physical, life, and information sciences when working at
, Northwestern University Trevor is an undergraduate psychology major with a minor in business institutions and a certificate in marketing. Over the course of his Northwestern career he has conducted research for and served as a coauthor on numerous psychology and other social science studies.Dr. Penny L. Hirsch, Northwestern University Penny L. Hirsch, Professor of Instruction and Associate Director of the Cook Family Writing Program at Northwestern University, teaches classes in the Weinberg College of Arts and Sciences and the Mc- Cormick School of Engineering and Applied Science. She was Northwestern’s first Charles Deering McCormick University Distinguished Lecturer and played a key role in developing Design Thinking and
public policy, assessing stakeholder needs and desires, resource analysis, and collective impact engagement. Currently, he is working closely with several local and national organizations to research and rally opposition against the transfer of federal public lands to state governance.Dr. Steven J. Burian P.E., University of Utah Dr. Steven J. Burian is an associate professor in the Urban Water Group in the Civil and Environmental Engineering Department at the University of Utah. Dr. Burian’s career spans more than a decade during which he has worked in design engineering, as a scientist at Los Alamos National Laboratory, as a profes- sor at the University of Arkansas and the University of Utah, and as a director of
interests include interdisciplinary collaboration, design education, communication studies, identity theory and reflective practice. Projects supported by the National Science Foundation include exploring disciplines as cultures, interdisciplinary pedagogy for pervasive computing design; writing across the curriculum in Statics courses; as well as a CAREER award to explore the use of e-portfolios to promote professional identity and reflective practice. c American Society for Engineering Education, 2016 Student Persistence Through Uncertainty Toward Successful Creative PracticeAbstract: To increase creative practice among students in engineering and other
recipient of an NSF CAREER award to study boundary-spanning roles and competencies among early career engineers. He holds a B.S. in Electrical Engineering from Michigan Tech and M.S. and Ph.D. degrees in Science and Technology Studies (STS) from Virginia Tech. Dr. Jesiek draws on expertise from engineering, computing, and the social sciences to advance understanding of geographic, disciplinary, and historical variations in engineering education and practice.Natascha M Trellinger, Purdue University, West Lafayette Natascha Trellinger is a second year Ph.D. student in the School of Engineering Education at Purdue University. She received her B.S. in Aerospace Engineering from Syracuse University where her interest in the
UniversityAbstract:Although there is evidence that most women with long-term careers in STEM will face someform of sexism, there is little research on how to handle such behaviors. Some situations requireintervention by those with authority, some can be confronted directly by individuals, and stillothers should be ignored. To better understand how students and faculty should respond to sexistcomments made by one student to another, we interviewed engineering students, professionals,and faculty, asking them to respond to two different real-life scenarios containing sexistcomments.We found that three-fourths of professionals and over one-third of students had experiencedinappropriate behaviors that could be labeled as sexist. Furthermore, we found major differencesin
over a 19-year teaching career and among the lowest courseratings in the department. The average departmental overall course rating is 4.8. A few studentsrated the course adequate; four students rated the course at a 4 or 5. Students’ expectations werelow; the “personal interest before enrolled” average rating was 2.1 / 6 (median 2.0); the lowestseen in the department. The average amount of time that students reported spending on thecourse (including class) was 7-9 hours per week; that is appropriate to an upper-divisionengineering course that meets 2 hours per week with an expectation of 2 to 3 hours of outsidework per week per credit hour (6 to 8 hours, by that estimate). The median was only 4-6 hours,and this may be why some students did
to a reason for pursuing (or not) engineering thatis related to the self-perceived identify of an engineer; Cost is the price of success (or failure) interms of effort, time, and/or psychological impacts in pursuing engineering in comparison toanother career; Interest is the enjoyment (or lack of) experienced in doing engineering activities;and Utility is the perceived usefulness (or lack of) of becoming an engineer and/or earning anengineering degree (Matusovich et al., 2010). The authors conducted longitudinal semi-structured interviews of 11 participants (5 boys and 6 girls) during their four years ofundergraduate engineering education. They found that all four Eccles’ value categories arepresent; that attainment value plays a prominent
societal challenges; and 4)perform data collection, analysis and presentation in order to answer research questions andshare research results with a professional audience. The course also emphasized critical thinking,multidisciplinary perspectives, leadership and team-based problem solving. To achieve thecourse learning objectives, the course focused on problems associated with an aging sewersystem, generally, and the lack of local sewer infrastructure data, specifically. This course wasexperimental in that it introduced design thinking through an experiential learning project earlyin engineering students’ academic careers. Traditionally, design capstone courses are offeredtoward the end of students’ course of study after core courses and textbook
complete in one academic year. It was understood by the companythat most of the students would be graduating and starting professional careers after thecompletion of their degrees. In the fall semester proposals were drafted and aggressive scheduleswere put together. By the winter break working prototypes of all three systems, mechanical,electrical and software, were demonstrated. It was the hope of the company to be ready tomanufacture at the conclusion of the spring semester. As with most student projects, issuesslowly started to materialize that would impede demonstrating a commercially ready solution inthe time frame desired by the company.By the end of the academic year, a fully functional software system was demonstrated. Theelectrical
RET Grant and a USDA NIFA grant, and is currently co-PI on three NSF-funded projects in engineering and computer science education, including a Revolutioniz- ing Engineering Departments project and a CAREER project, FRAME. She was selected as a National Academy of Education / Spencer Postdoctoral Fellow. Dr. Svihla studies learning in authentic, real world conditions; this includes a two-strand research program focused on (1) authentic assessment, often aided by interactive technology, and (2) design learning, in which she studies engineers designing devices, sci- entists designing investigations, teachers designing learning experiences and students designing to learn.Chen Qiu M.Sc., University of New Mexico Chen
comes out or begins transitioning between the ages of 18 and 24[14]. This itself is a process with additional social and material support needs which canovershadow the demands of the classroom.Resiliency and social support Resiliency refers to the processes used to overcome challenging situations and adapt tothe demands of life, with particular attention on the unique strategies employed by marginalizedgroups [16, 17]. Transgender and gender nonconforming students are often written about throughdeficit framing which define their lives in terms of their trauma or perceived academic failure[13, 18]. In contrast, resilience is “reflected by achievement in career development, happiness,relationships, and physical well-being in the presence
of Toronto, where he rose to the rank of professor. In 2001, he joined the Department of Chemical and Materials Engineering at the University of Alberta where he holds the NSERC industrial research chair in petroleum thermodynamics. During his career he has developed expertise in the phase behavior, physiochemical and transport prop- erties of hydrocarbon mixtures from coal liquids, heavy oils and condensate rich reservoir fluids to pure compounds. This led to the establishment of an NSERC (like NSF in the USA) Industrial Research Chair in 2001, a rare honour at that time. He has held visiting scientist/professor positions at the Technical Uni- versity of Delft (Delft, The Netherlands), the Institut Francais du
Degree in Engineering Managament and a Bachelor’s Degree in Chemical Engineering in 2018. While at Northeastern, he was involved in the Connections Chemistry Review program and first year engineering tutoring for four years. Tyler currently works as a tech transfer engineer in biopharmaceuticals.Dr. Paul A. DiMilla, Northeastern University Paul A. DiMilla is an Affiliate Associate Teaching Professor in Chemistry & Chemical Biology and Chem- ical Engineering at Northeastern University. During his academic career at Carnegie Mellon University, Boston University, and Olin College he has been the recipient of the first Whitaker Young Investigator Award from the BMES, a Searle Scholar Award, and an Early Career
University has several programs learning support such as UCL Arena and UCL: Changemaker that supports teaching and learning and collaborations in these areas. Career tracks are divided into an academic track, an education-focused track Reward and and a research track. University instituted reform to develop a process for recognition of improving and formalizing the recognition and reward of teaching teaching achievement. engineering education research capacity has grown significantly since the Educational introduction of the IEP. Areas of particular research focus include (i) research problem-based and skills-based learning; and (ii
forthe sake of the institution’s reputation, the desire to protect their most prolific and well-knownscientists, and the fear of being sued by the targets of bullying” 31 . Furthermore, the kind of negativerelationship between PhD student and advisor discussed in Narrative 3 can be a major contributingfactor to a students’ decision to either leave the PhD program or to complete the PhD programbut abandon a faculty career 32 . A 2018 Nature editiorial stated “[we] will never know how manypromising scientific careers around the world have been brought to a premature end because youngresearchers felt they could not continue to work under a bullying senior figure” 33 . Another author of this work had a very similar experience in their previous