ASEE Annual Conference Proceedings, IEEE Transactions on Professional Communication, INFORMS Transactions on Education, and the International Journal of Engineering Ed- ucation, and others. She authored the book Oral Communication Excellence for Engineers and Scientists, published in summer 2013. Over the past 15 years Dr. Norback has given over 40 conference presen- tations and workshops at nation-wide conferences such as ASEE, where she has served as chair of the Liberal Education/Engineering & Society (LEES) Division. She has been an officer for the Education Forum of INFORMS and has served as Associate Chair for the National Capstone Design Conference. Dr. Norback has a Bachelors’ degree from Cornell
Paper ID #30058Developing the ESLS - Engineering Students Learning Strategies instrumentDr. Sreyoshi Bhaduri, McGraw-Hill Sreyoshi Bhaduri leads Global People Analytics at McGraw Hill - where she works on projects leveraging employee data to generate data-driven insights for decisions impacting organizational Culture and Talent. Sreyoshi has an interdisciplinary expertise having earned her Ph.D. in Engineering Education from the College of Engineering at Virginia Tech and Masters degrees in Applied Statistics and Mechanical En- gineering. Her research interests include women in technology and industry, studying the impact
Paper ID #30624Leaving Civil Engineering: Examining the Intersections of Gender,Disability, and Professional IdentityDr. Cassandra J. McCall, Virginia Tech Dr. Cassandra McCall is a post-doctoral researcher in the Department of Engineering Education Vir- ginia Tech. Her primary research interests include professional identity formation in undergraduate civil engineering students, grounded theory methods, and theory development. Currently, she is principal in- vestigator on an NSF sponsored project exploring the professional identity formation of civil engineering students who experience disabilities. In particular, she is
this debate include the attractiveness of the career forprospective students, the retention of those students who enter the program, the diversity ofstudents in the program, and then the degree of fit between program outcomes and the needsof the workplace. Within this debate it is generally assumed that the curriculum is the arenain potential need of reform [3]–[5]. Curriculum reform deliberations tend to operate at arelatively high level, with a central tension between “theory” (engineering and basic sciencecontent) and “practice” (professional skills, often in project type context) [6].A relatively recent focus for global curriculum discussions has been the spread of outcomes-based criteria for accreditation through the mechanism of the
engineering education research interests focus on community engage- ment, service-based projects and examining whether an entrepreneurial mindset can be used to further engineering education innovations. He also does research on the development of sustainable materials management (SMM) strategies.Dr. Daniel Knight, University of Colorado Boulder Daniel W. Knight is the Program Assessment and Research Associate at Design Center (DC) Colorado in CU’s Department of Mechanical Engineering at the College of Engineering and Applied Science. He holds a B.A. in psychology from Louisiana State University, an M.S. degree in industrial/organizational psychology and a Ph.D. degree in education, both from the University of Tennessee
engineering and automation, electricalengineering and automation, chemical engineering and technology, computer science andtechnology.In 2007, the Ministry of Education and the Ministry of Finance decided to implement the“Project of Undergraduate Teaching Quality and Teaching Reform in Colleges andUniversities” in order to actively explore the reform of the program evaluation system andfocus on advancing the pilot work of program accreditation in engineering technology andmedicine, in an attempt to build a accreditation system adapting to the social and professionalneeds. In December 2007, the National Engineering Education Program AccreditationSupervision and Arbitration Commission was established to further promote the improvementof engineering
programming assignments, although there were issues early on.7. Student’s performance in the initial course offering and in the course of capstone projects was exceptionally high. This result was due to a biased sampling; the four juniors taking the special topic course initiated the effort, and the sophomores that attended regularly were invited by the instructor. We hope to see better understanding of basic principles and excellent performance in the future versions of the course.ConclusionsStatistics Literacy and critical thinking is necessary in today’s world that is fascinated withnumbers and data. Even if one is not responsible for conducting Monte Carlo simulations, oneneeds the basic understanding to properly use the information
, where she directs the Vir- ginia Tech Engineering Communications Center (VTECC). Her research focuses on communication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and is co-PI on numerous NSF grants exploring communication, design, and identity in engineering. Drawing on theories of situated learning and identity development, her work includes studies on the teaching and learning of communication, effective teaching practices in design education, the effects of differing design pedagogies on retention and motivation, the
Engineering, both from University of Maine.Dr. Taufik Taufik, California Polytechnic State University, San Luis Obispo Dr. Taufik received his B.S. in Electrical Engineering with minor in Computer Science from Northern Ari- zona University in 1993, M.S. in Electrical Engineering from University of Illinois, Chicago in 1995, and Doctor of Engineering in Electrical Engineering from Cleveland State University in 1999. He joined the Electrical Engineering department at Cal Poly State University in 1999 where he is currently a Full Pro- fessor. He is a Senior Member of IEEE and he has done work for several companies including Capstone Microturbine, Rockwell Automation, Picker International, San Diego Gas and Electric, Sempra
work of Robert Irish [18], data and analyses of style and verb use, voice and pronoun use, anddevelopment via use of extended prose or visuals show significant variation in “technical writing.” Thefindings can support faculty in identifying nuances of expression, articulating expectations in writingassignments and assessments, and guiding upper-class undergraduates to develop professional-levelexpression.The goal of the current project is to better identify the codes and dialects among engineering disciplines:specifically, civil, electrical, and mechanical engineering. Research questions guiding this work are:In what ways can using a rhetorical language to analyze the professional writing of engineers revealdiscipline-specific codes and
is well-established that students have difficulty transferring knowledge and skills betweencourses in their undergraduate curriculum. At the same time, many college-level courses onlyconcern material relating to the course itself and do not cover how this material might be usedelsewhere. It is unsurprising, then, that students are unable to transfer and integrate knowledgefrom multiple areas into new problems as part of capstone design courses for example, or in theircareers. More work is required to better enable students to transfer knowledge between theircourses, learn skills and theory more deeply, and to form engineers who are better able to adaptto new situations and solve “systems-level” problems. In this investigation, students in
overall score may not be the best indicator, we decided to focus on thisarea for improvement during this cycle.Established in Cycle: 2015-2016 Implementation Status: Planned Priority: HighRelationships (Measure | Outcome/Objective):Measure: Course Objectives Assessment | Outcome/Objective: Effective Written and OralCommunicationsMeasure: IAC Capstone Evaluation | Outcome/Objective: Effective Written and OralCommunicationsMeasure: Senior Exit Survey | Outcome/Objective: Effective Written and Oral Communications Proceedings of the 2017 ASEE Gulf-Southwest Section Annual Conference Organized by The University of Texas at Dallas Copyright © 2017, American Society for
Geneva, working on the West Area Neutrino Facility and North Area 48. Since then Jo˜ao has held several positions in teaching and management in higher ed- ucation at institutions across the UK, Middle East, Africa and Asia. At Leeds Becket University, Jo˜ao specialised in teaching Mobile and Fixed Networking Technologies and introduced compendium-based teaching practices and led the design and implementation of the first Mobile and Distributed Computer Networks postgraduate course in UK. Jo˜ao authored and managed a European Social Fund Project in Women in Engineering contributing to widening participation and inclusion of women engineers, developed and ran world-class innovative aca- demic practice methods in
interaction within the learning environment [26, 42-44]. Another set of techniques being introduced is related to text analysis. For instance,researchers went beyond traditional coding approaches to analyzing texts and used unsupervisedlearning clustering algorithms and information retrieval techniques for text analysis [45].Researchers also used text mining and web log mining techniques to gain deeper insights onmajor discussion topics in design capstone engineering courses [36]. As such, new data sources,integrated data systems and emerging analytical techniques demand technology-enhancedlearning analytics system design emerge [46] and, once the system is in place, will enable what iscalled “multimodal learning analytics” [47]. These developments
engineering problems, which are oftenopen-ended, complex, and ill-defined with many unknowns and variables. For example, studentsmay learn how to measure certain parameters or engineering properties related to a flow or heatexchanger system from these lab activities, but they do not necessarily understand how thosemeasurements are used in the design of flow or heat exchanger systems in food processing, whatother variables to consider, and how those variables are interrelated and can affect the design andoperation of such systems.The department curriculum includes a senior-level capstone design course for AE majors and amulti-semester project course for AET majors. In these senior-level project-based courses,students are tasked with applying their
Executive Committee and a Program Evaluator for both computer engineering and computer science. Estell is well-known for his significant contributions on streamlining student outcomes assess- ment processes, and has been an invited presenter at the ABET Symposium on multiple occasions. Estell is also a founding member and current Vice President of The Pledge of the Computing Professional, an organization dedicated to the promotion of ethics in the computing professions. Estell is Professor of Computer Engineering and Computer Science at Ohio Northern University, where he currently teaches first-year programming and user interface design courses, and also serves on the col- lege’s Capstone Design Committee. Much of his
chosen over other software owing to its additional capability of reporting detailedhand calculations, as well its integration of structural design codes for solving structural designproblems. Our future plans include utilizing the software to solve problems on buckling ofcolumns and structural design, as design codes are integrated in SkyCiv. The main aim of thelearning modules is to develop student competency in the application of commercial software forstructural analysis for solving challenging capstone and other course projects, better preparationfor workforce and graduate studies, complementing hand solution methods, and enhancingstudent engagement. Since SkyCiv was applied to discrete structures, the theoretical knowledgeof FEA is not
/database/network courses and capstone project courses. In RPGs,experience points (XP) are used to quantify a player’s (or character’s) progression through thegame. XP can be implemented in different ways. Level-based progression XP are widely applied:Players win enough XP as rewards to reach next higher level 27 . Players in the next level will haveincreased ability. We want to design level-based XP to reflect students’ progress through theircourses. However, we want to avoid associating XP directly with performance-based criteria suchas students’ assignment scores, since this may cause unexpected negative effects. A suite ofindicators that assess students’ progress and effort based on their submissions 8 are a possiblecandidate measure for XP
Wright State University.Dr. Ann D. Christy P.E., The Ohio State University Ann D. Christy, PE, is a professor of Food, Agricultural, and Biological Engineering and a professor of Engineering Education at the Ohio State University (OSU). She earned both her B.S. in agricultural engineering and M.S. in biomedical engineering at OSU, and her Ph.D. in environmental engineering at Clemson University. She worked for an engineering consulting firm before entering academia and continues to collaborate with the consulting industry. She has taught courses in bioenergy, biological en- gineering, capstone design, HVAC, thermodynamics, waste management, professional development, and engineering teaching. Her research interests
learning to design teaching and learning, program content and structure, student assessment, and continuous course improvement techniques. She managed and was a key contributor to a two-year pilot project to introduce blended learning into the chemical engineering capstone design courses, and is the author of a number of recent journal, book, and conference contribu- tions on engineering education. Her research focusses on how to teach innovation and sustainable design practices to engineers and develop a curriculum reflective of engineering practice requirements. Recently she has taught a short course on how to design and teach process engineering courses to professors in Peru and workshops on Metacognition and
Paper ID #30014Utilizing Peer Learning Assistants to Improve Student Outcomes in anIntroductory ECE CourseDr. David John Orser, University of Minnesota, Twin Cities David Orser teaches and develops undergraduate education curriculum with a focus on laboratory courses for the University of Minnesota, Twin Cities, Electrical and Computer Engineering Department. His courses leverage project-based learning, experiential learning, and self-paced activities. David has over ten years of industry experience specializing in mixed-signal high-speed integrated circuit design, power systems, and power electronics.Kyle Dukart
results and confounded datain the studies referenced above.The First-year Engineering ProgramThe Northeastern University College of Engineering, following a successful pilot in 2014,decided to adopt a “Cornerstone to Capstone” curriculum design for all incoming first-yearengineering students. The Cornerstone course incorporates hands-on, project-baseddesign work with computer programming. Previously taught in two separate first-yearcourses, the new Cornerstone course model blends programming and design in a way thatdemonstrates the intertwined nature of the two skills. The project-based Cornerstoneincludes occasional incongruent learning of course content. By highlighting the fact thatproblem-solving in engineering brings together groups of
multidisciplinary research? What are they? How can a mentor’s reaction to the unexpected motivate or influence a mentee to make good or bad ethical choices? What is the issue or point of conflict?In the case study titled “Plagarism,” participants are asked to imagine what they would do as onemember of a team of students working on a capstone project that has been assigned to develop abackground report about the current state-of-the-art. The day of the deadline, another membersends their background section with what appears to be a large, plagiarized section of text (basedon a quick internet search); the assignment is due today and the author can’t be reached. Thiscase study asks participants to consider what they would do, how they
, Okudan G. Integrating systematic creativity into first-year engineering design curriculum[J]. International Journal of Engineering Education, 2006, 22(1):109-115(7).[9] Elvin Shields. Fostering Creativity in the Capstone Engineering Design Experience[A]. American Society for Engineering Education. ASEE Proceedings 2007[C]. IEEE,2007:12.756.1-12.483.10.[10] IlevbareI M, Probert D, Phaal R. A review of TRIZ, and its benefits and challenges in practice[J]. Technovation, 2013,33(2-3):30-37.[11] Chechurin L. Research and Practice on the Theory of Inventive Problem Solving (TRIZ)[M]. London, Springer, 2016:2-5.[12] Spreafico C, Russo D. TRIZ Industrial Case Studies: A Critical Survey ☆[J
Ph.D. in management and organization from the University of Oregon in 2002. Dr. Bryant has taught undergraduate, MBAs, graduate students in accounting, science and engineering as well as practicing technical managers. His primary focus is on improving people management skills including: personality, conflict, negotiation, motivation, supportive communication, and many more. He has conducted research projects at Microsoft, Nike, Planar and published articles in leading management journals. Scott’s recent research has focused on leadership, growth mindset and emotional intelligence.Dr. Brock J. LaMeres P.E., Montana State University - Bozeman Dr. Brock J. LaMeres is a Professor in the Department of Electrical &
JEE and the 2011 and 2015 Best Paper Awards for the IEEE ToE. In Spring 2012, Dr. Lord spent a sabbatical at Southeast University in Nanjing, China teaching and doing research. She is on the USD team implementing ”Developing Changemaking Engineers”, an NSF-sponsored Revolutionizing Engineering Education (RED) project. Dr. Lord is the 2018 recipient of the IEEE Undergraduate Teaching Award. American c Society for Engineering Education, 2020What is Energy? Examining Engineering Students’ Conceptions of EnergyAbstract Public opinion about energy issues has created an ideological divide between renewableand non-renewable energy sources. In engineering
outreach with underrepresented groups in STEM.Dr. Lauren Anne Cooper, California Polytechnic State University, San Luis Obispo Lauren Cooper earned her Ph.D. in Mechanical Engineering with a research emphasis in Engineering Education from University of Colorado Boulder. She is currently an Assistant Professor in Mechanical Engineering at California Polytechnic State University in San Luis Obispo. Her research interests include project-based learning, student motivation, human-centered design, and the role of empathy in engineering teaching and learning.Dr. Trevor Scott Harding, California Polytechnic State University, San Luis Obispo Dr. Trevor S. Harding is Professor and Department Chair of Materials Engineering at
ABETaccredited, they all had demonstrable coverage of ethics-related program outcomes. The authorsobserved that there were often general education ethics requirements which could have been usedas part of the ABET accreditation.A survey of primarily civil engineering faculty by Freyne and Hale [8] found that facultygenerally supported disciplinary ethics courses taught from within a program, but often doubtedthe training or ability of disciplinary faculty to teach ethics appropriately or well given the lack oftraining.A survey of 24 papers focusing on undergraduate engineering ethics education found that ethicstended to be taught as part of another course, usually either in a Capstone/Senior Design course orin an introductory Engineering 101 course [9
Paper ID #29167The Engineering Education Experiences of Students Serving in theReserves or National GuardDr. Catherine Mobley, Clemson University Catherine Mobley, Ph.D., is a Professor of Sociology at Clemson University. She has over 30 years experience in project and program evaluation and has worked for a variety of consulting firms, non-profit agencies, and government organizations, including the Rand Corporation, the American Association of Retired Persons, the U.S. Department of Education, and the Walter Reed Army Institute of Research. Since 2004, she been a member of the NSF-funded MIDFIELD research project on
Siddique is a Professor of Mechanical Engineering at the School of Aerospace and Mechanical Engineering of University of Oklahoma. His research interest include product family design, advanced material and engineering education. He is interested in motivation of engineering students, peer-to-peer learning, flat learning environments, technology assisted engineering education and experiential learning. He is the coordinator of the industry sponsored capstone from at his school and is the advisor of OU’s FSAE team. American c Society for Engineering Education, 2020WIP: Using neuro-responses to understand creativity, the engineering design process