evaluation of work product. Numerous authorshave outlined the assessment strategy of constructing rubrics for measuring studentachievement of learning outcomes and applying them to portfolios of student work.Other authors have outlined use of rubrics for evaluation and grading of individualassignments and projects. This paper will describe the use of a consolidated rubric forevaluating final reports in the capstone Chemical Plant Design course. Instead of gradingeach report and then having some or all of the reports evaluated through a separateprocess for programmatic assessment purposes, the instructor evaluates the report onceusing the rubric, and the same raw data is used both for grading and for programmaticassessment.BackgroundSince 2000, ABET1
are 4. A preliminary survey of best practices guidelines for simulationuse, developed by practicing engineers,5 indicates that the expert approach has an underlyinguniformity irrespective of the specific context or discipline. Our project extends this cognitiveand simulation research to industrial-standard simulation platforms. We hypothesize that ifstudents, in their formative years, see the same expert approach to simulations being followedrepeatedly for a wide variety of problems in different subject areas, they are likely to internalizeit and be able to apply it in new situations. Students will thus develop a mental organizationalstructure similar to those developed by experts with years of experience working withsimulations. Students
AC 2011-94: USING SOCIAL NETWORKING GAME TO TEACH OPER-ATIONS RESEARCH AND MANAGEMENT SCIENCE FUNDAMENTALCONCEPTSIvan G. Guardiola, Missouri S&TSusan L. Murray, Missouri University of Science & Technology Susan L. Murray is an Associate Professor in the Engineering Management and Systems Engineering Department at Missouri University of Science and Technology. Dr. Murray received her B.S. and Ph.D. in industrial engineering from Texas A&M University. Her M.S. is also in industrial engineering from the University of Texas-Arlington. She is a professional engineer in Texas. Her research and teaching inter- ests include human systems integration, productivity improvement, human performance, safety, project
to the workon instructional development, the degree of assessment has been sparse.11-13Our intent is to provide students a capstone experience in which they can apply experimentaldesign in a context similar to that of a practicing engineer in industry. The objectives of thisresearch are to explore the types of cognition and social interactions of student teams as theyengage in these virtual laboratories, to determine the role of instructional design in the responseof student teams, and to ascertain whether virtual laboratories can effectively promote types oflearning that are difficult or impossible to achieve from physical laboratories.Objectives The specific objectives of the NSF CCLI Phase 2 project are to: 1. Create the following
engineering students at Michigan Technological University studyengineering ethics. These same students complete some type of engineering design project. Whatwould happen if these students explored the ethical issues surrounding their design topic? Wouldtheir understanding and application of ethics improve? Would their ability to analyze ethical casestudies improve? Traditionally, students first learn about engineering ethics and ethical decisionmaking and then apply these concepts in analyzing typical introductory engineering ethics casestudies.At Michigan Technological University, the effect of integrating engineering ethics into thesemester-long design project was explored in four sections of a first-year engineering course.Within the four sections
deploy them at local k-12 schools and community partners. It is a student-run organizationand a course offered at UC Berkeley. BEAM has made great efforts to constantly evolve, assess,and redesign itself into a flexible program to achieve our mission: to impact the future ofstudents in our community through hands-on learning. It is our belief that BEAM serves as amodel for effective student-led outreach and education partnerships between universities andtheir surrounding educational institutions. Our ten-week course consists of a day-long mentortraining followed by a guest lecture series, weekly volunteer site visits, and a final project. Thecourse adheres to engineering and education principles including: ABET Criteria, engineeringdesign loop
AC 2011-1727: SELF-DIRECTED LEARNING CONTENTION: FACULTYAND STUDENT VIEWSCasey Canfield, Franklin W. Olin College of Engineering A recent systems engineering graduate from Franklin W. Olin College of Engineering, Class of 2010.Brittany Strachota, Franklin W. Olin College of Engineering Brittany Strachota is a member of the Class of 2013, studying engineering at Franklin W. Olin College of Engineering.Yevgeniya V. Zastavker, Franklin W. Olin College of Engineering Yevgeniya V. Zastavker is an Associate Professor of Physics at Franklin W. Olin College of Engineering. Her research interests lie at the intersection of project-based learning and gender studies with specific emphasis on the curricula and pedagogies
, implementation and deployment of the AT&T Services and Network in Mexico. He was also Siemens Business Services (SBS) Practice Director for Latin America where he was the main consultant in systems implementations in Venezuela, Colombia, Ecuador and Brazil. Dr. Pineda has extensive experience in Academia; he was a Professor at ITESM in Monterrey, Mexico and at the ”Universidad de Los Andes” in Colombia and currently at the University of Texas at El Paso. His current Research projects include: PI for ”Energy Se- curity Microgrid Large Scale Energy Storage (LSES)” for Raytheon-Energy Solutions, PI for ”Prognosis & Resilience Design for Complex SoS” with Raytheon-IDS, PI ”SOS Global Attributes to Design Space Mapping
AC 2011-1625: IMPROVING STUDENT RETENTION IN STEM DISCI-PLINES: A MODEL THAT HAS WORKEDAndrew Kline, Western Michigan University Associate Professor of Chemical Engineering PhD, Michigan Technological UniversityBetsy M. Aller, Western Michigan University Betsy M. Aller is an associate professor in industrial and manufacturing engineering at Western Michigan University, where she teaches first-year engineering and coordinates capstone design project courses. Dr. Aller’s research interests include professional development of students to enter and succeed in the engineering workplace, and enhancing engineering and technology-related experiences for women and minorities.Dr. Edmund Tsang, Western Michigan University
of Formulas, Solutions, and MATLAB Toolboxes”.Cheng-Yuan Jerry Chen, USC Dr. ChengYuan Jerry Chen is fulltime Lecturer of Aerospace and Mechanical Engineering, who has in- volved with AME laboratory teaching for more than 8 years in AME341, 441, and 443 classes. His expertise is not only in analytical and computational of dynamic and control systems, but also in exper- imental and laboratory hardware implementations. He has more than 20 years of advanced machining experience and has accomplished enormous projects in mechanical and electrical designs. He is currently the head leader of the instructional laboratory in the Aerospace and Mechanical Engineering Department
is a teaching and learning methodology that connects curriculum withidentified community issues and needs. Service learning engages projects that serve thecommunity and build their social and academic capacities. Service learning was based offthe views of John Dewey, a philosopher and educator who advanced the concept that activestudent involvement in learning, insisted that this is an essential element in effectiveeducation. He viewed the community as an integral component of educational experiencesfor both enhancing a student’s education and for developing future societies. The need forengaged learning and an implementation of technology will further develop training forstudents in technological discipline, and will fulfill a societal
exposed to critical thinkingprinciples, system engineering basics, and team-working skills. During the program, the CASHstudents conduct NASA-related research, complete a project, and present their findings in aresearch exposition at the conclusion of the summer program.For the 2010 program, NASA’s Jet Propulsion Laboratory (NASA-JPL) in Pasadena, Californiaworked with ISF over the spring and provided the CASH program with both a Solar-based and aTelecom-based project for its CASH students. These two projects allowed the CASH students towork in research areas relevant to NASA.Program DescriptionSelection of ParticipantsFor the first two years of the CASH program, students have been provided to the programthrough a partnership with the Bluford
little experience in scholarship but wouldenjoy working with a faculty member on research and publications. There are small steps that newfaculty can take in their classes that will help students be better prepared for scholarship. Forexample, conversion of a class project report from a generic format to a journal paper formatintroduces students to a logical and structured way of presenting information coupled with a processof multiple revisions. Results of using such an approach in a third year technical class are presented.The students’ efforts resulted in a professional-looking paper and a sense of pride in the finalproduct. IntroductionNew faculty members are often expected to produce scholarly
analysis time, muchlower sample and reagent consumption (in the nanoliter range or less), and enhanced systemperformance and functionality by integrating different components onto microfluidic devices1-2.These applications are usually called micro total analysis systems (!TAS) or lab on a chip (LOC)3-4 . Since its debut in the 90s5-7, microfluidics technology has made significant progress andgradually moved from pure research projects to commercialized products, such as AgilentTechnologies’ 2100 Bioanalyzer for biomolecule analysis8, Caliper Life Sciences’ LabChipsystems for biomolecule analysis and drug discovery9, and Fluidigm Corporation’s BioMarksystem for real-time PCR10.We notice that from the microfluidics technology industry (especially
AC 2011-2360: INSTRUCT INTEGRATING NASA SCIENCE, TECHNOL-OGY, AND RESEARCH IN UNDERGRADUATE CURRICULUM AND TRAIN-INGRam V. Mohan, North Carolina A&T State University (Eng) Dr. Ram Mohan is currently an Associate Professor with the interdisciplinary graduate program in com- putational science and engineering (CSE). He serves as the module content director for the INSTRUCT project. Dr. Mohan currently has more than 90 peer reviewed journal articles, book chapters and con- ference proceedings to his credit. He plays an active role in American Society for Mechanical Engineers (ASME) and serves as the chair of the ASME materials processing technical committee and a member of the ASME Nanoengineering Council Steering
AC 2011-2781: USING PORTABLE ELECTRONICS EXPERIMENT KITSFOR ELECTRONICS COURSES IN A GENERAL ENGINEERING PRO-GRAMJason Yao, East Carolina University Dr. Jianchu (Jason) Yao joined the Department of Engineering at East Carolina University as an Assistant Professor in August, 2005. He received a B.S. and M.S. degrees in electrical engineering from Shaanxi university of Science and Technology, China, in 1992 and 1995, respectively, and the Ph.D. degree in elec- trical engineering from Kansas State University in 2005. His research interests include wearable medical devices, telehealthcare, bioinstrumentation, control systems, and biosignal processing. His educational research interests are laboratory/project-driven
AC 2011-2498: OPTIMAL DESIGN OF A PUMP AND PIPING SYSTEMCurtis Brackett, Bradley University I am a senior mechanical engineering major at Bradley University in Peoria, IL. I am originally from Aurora, IL. I am the team captain for Bradley’s Formula SAE senior project. I am very interested and plan on developing my career in the field of energy generation.David Zietlow, Bradley University Professor of Mechanical Engineering at Bradley University The primary author is Curtis Brackett, candidate for BSME May 2011 Page 22.1126.1 c American Society for Engineering Education, 2011
current work in software defined radio (SDR) includes leading projects related to the OSSIE open source effort. He chairs the Wireless Innovation Forum Educational Work Group, is a member of ASEE, IEEE, and Eta Kappa Nu, and is a Professional Engineer in Virginia.Ms. Cecile DietrichGarrett Michael Vanhoy, University of Arizona Page 22.1548.1 c American Society for Engineering Education, 2011 Transition from Undergraduate Research Program Participants to Researchers and Open Source Community ContributorsAbstractExperiences of three participants in an undergraduate research
and qualitative research methods. Dr. Nathan has secured over $20M in external re- search funds and has over 80 peer-reviewed publications in education and Learning Sciences research, as well as over 100 scholarly presentations to US and international audiences. He is Principal Investiga- tor or co-Principal Investigator of 5 active grants from NSF and the US Dept. of Education, including the AWAKEN Project (funded by NSF-EEP), which examines learning, instruction, teacher beliefs and engineering practices in order to foster a more diverse and more able pool of engineering students and practitioners, and the Tangibility for the Teaching, Learning, and Communicating of Mathematics Project (NSF-REESE), which explores
the Information Technology Experiences for Students and Teachers project, Learning through Engineering Design and Practice (2007-2011), a National Science Foundation Award# 0737616 from the Division of Research on Learning in Formal and Informal Settings. This project is aimed at designing, implementing, and systematically studying the impact of a middle-school engineering education program.Johnny Thieken, Arizona State University John Thieken, MEd., is currently a high school mathematics teacher at the Paradise Valley School District and a doctoral student in the PhD in mathematics education at Arizona State University. He has as Bache- lor of Science in Mechanical Engineering from Northern Arizona University and
Beijing JiaotongUniversity (BJTU) in Beijing, China. In the past summer, a total of 6 students have taken part inthe IRES program. These students stayed in Beijing Jiaotong University for 8 weeks and workedon three different projects related to fuel cells. This paper will focus on the organization of thisprogram including pre-departure preparation, on-site orientation, on-site activities and post-program assessment. Also, the lessons learned from running this type of program will besummarized. Some suggestions to keep the sustainability of the program will be also provided.IntroductionThe globalization of science, engineering and manufacturing is very important in re-shaping thecurrent US economy. Much has been made in the literature about the
Nanotechnology ProgramsAbstractA new Bachelor of Science Nanotechnology track within the School of Engineering andTechnology at Indiana University Purdue University Indianapolis (IUPUI) is being developedunder NSF NUE program*. This paper covers the educational elements from the first phase ofthe project. A sequence of two courses was offered in the fall and spring semesters within boththe School of Engineering & Technology and the School of Sciences. Students from electricalengineering, computer engineering, mechanical engineering, biomedical engineering, physics,and chemistry disciplines, were enrolled in these courses. A total of five faculty members fromboth engineering and sciences collaborated in developing and teaching these two
and Assistant Department Head of the Department of Engi- neering Education at Virginia Tech. He is the Director of the multi-University NSF I/UCRC Center for e-Design, the Director of the Frith Freshman Design Laboratory and the Co-Director of the Engineering First-year Program. His research areas are design and design education. Dr. Goff has won numerous University teaching awards for his innovative and interactive teaching. He is passionately committed to bringing research and industry projects into the class room as well as spreading fun and creating engage- ment in all levels of Engineering Education
practices are introduced in sophomore level thermodynamics andjunior level fluid mechanics courses. A multipurpose laboratory equipped with fluidprocess, sensors, data acquisition system, and application programs is being developed. Aseries of laboratory practices based on use of fluid mechanics principles in energyefficient industrial applications provide students a strong foundation of the subject. Laterin the senior level engineering design classes, these learnings are utilized to practiceinnovative design of energy efficient products. Industrial collaboration is established toensure student exposure to realistic energy efficient products and practices throughcapstone design projects and undergraduate research.1. IntroductionEngineering
devices and sensors, and electronic instrumentation and measurement. He can be reached at guvench@usm.maine.edu. Page 22.1721.1 c American Society for Engineering Education, 2011 “MUMPs” Multi-User-MEMS-Processes as Teaching and Design Tools in MEMS Instruction AbstractThe paper describes use of “MUMPs” (Multi-User-MEMS-Processes) as a platform to teachSilicon based MEMS technologies and to implement design projects in a new interdisciplinarysenior level undergraduate engineering course offered at the University of Southern Maine
and applied mechanics from the University of South Carolina and the University of Illinois at Urbana-Champaign, respectively. His areas of research interest include engineering mechanics applications.Jon-Michael Hardin, Virginia Military Institute Page 22.73.1 c American Society for Engineering Education, 2011 A Multidisciplinary Investigation into Various Possible Geometries Of Imperial Roman Artillery: A Case StudyIntroductionMultidisciplinary projects provide unique opportunities to foster critical thinking inundergraduate engineering students and to help students develop an
, video and audio tools. Implementation The proposed teaching tool, VisuaLearning, was used to teach a construction engineering management course, CEM 121 Construction Drawings, offered at the Department of Civil Engineering and Construction Engineering Management at California State University, Long Beach. Figure 1 shows a typical screen shot of VisuaLearning, in which texts, 3D images, video clips, and drawings are entered as illustrative visualizations for the foundations of a residential construction project to be covered in the course CEM 121. After going over the learning materials for a particular subject (e.g. Graphic Vocabulary), students are prompted to answer Proceedings of the 2011 PSW American Society for
AC 2011-1802: TRANS-DISCIPLINARY DESIGN TEACHING FOR CIVILENGINEERS AND ARCHITECTS LESSONS LEARNED AND FUTUREPLANSSinead MacNamara, Syracuse University Page 22.1541.1 c American Society for Engineering Education, 2011 TRANS-DISCIPLINARY DESIGN TEACHING FOR CIVIL ENGINEERS AND ARCHITECTS – LESSONS LEARNED AND FUTURE PLANSIntroductionThis paper describes ongoing efforts at Syracuse University to institute a trans-disciplinarycourse that brings together architecture and structural engineering students for a joint designseminar. This course forms part of a larger NSF funded project aimed at increasing innovationand
her project ”Rationale Capture for High-Assurance Systems”. She has been at Miami University since 2005. Prior to that point, she worked for more than 20 years in industry as a software engineer and research scientist.Paul V Anderson, Miami University (Ohio) Paul Anderson is the Roger and Joyce L. Howe Director of the Howe Center for Writing Excellence at Miami University, Oxford, Ohio. His publications on technical communication have won awards from the National Council of Teachers of English and the Society for Technical Communication. His textbook, Technical Communication: A Reader-Centered Approach, is in its seventh edition. His current research focuses on the ways college faculty in all disciplines can help
powerful sets of instructional principles andillustrating how they can be mapped to educational practice, we will empower these educators totry out new ideas in their own teaching.ApproachWe first introduce the two teaching cases that we will be using. The first case, the squaresactivity, was a class exercise used at the beginning of the term with a class of just under 30undergraduate students. The second case, the journal landscape project, was one of threeprojects assigned in a graduate class of just under 30 students. These two cases arecomplementary in that they vary in the unit of teaching (class activity versus multi-week project)and in terms of student population (undergraduate versus graduate).We did not select these cases because of any