), Applications of SolidWorks in Teaching Courses of Statics and Strength of Materials Paper presented at 2012 ASEE Annual Conference & Exposition, San Antonio, Texas. 10.18260/1-2--20959[11]. Northrup, S., & Burke, J. (2008, June), Continuous Improvement In Electrical Engineering Student Outcomes Paper presented at 2008 Annual Conference & Exposition, Pittsburgh, Pennsylvania. 10.18260/1-2—4114[12]. M. Budhu, “Virtual Laboratories for Engineering Education”, Proceeding of International Conference of Engineering Education, Manchester, UK, August 18-21, 2002.[13]. P. Bhargava1, C. Cunningham, M. Tolomeo, and A. Zehnder, “Virtual Labs, Real Data for Statics and Mechanics of Materials”, ASEE 2003 Annual Conference
entrepreneurial opportunities in renewable energy systems.Introduction While many engineering educators have heard of service learning or extracurricularuniversity activities designed to engage students with renewable energy technologies [1,2] oreven clinic-based courses and project-based learning experiences involving photovoltaic (PV)projects [3-7] it remains a more difficult and challenging task to bring these experiences into thecore curriculum of an ECE program. This paper details one somewhat successful attempt.Throughout six weekly laboratories (at the latter half of the semester), teams comprising threestudents each analyzed and evaluated the potential for PV to power an electrical appliancetypically found in a residential setting. Teams
postdoc at the Massachusetts Institute of Technology before starting her academic career at Oklahoma State University (OSU), where she was an assistant professor 2014-2020 and then a tenured associate professor until January 2021 before moving to UB. Dr. Ford Versypt leads the Systems Biomedicine and Pharmaceutics Laboratory. She was the 2020-2021 Chair for the ASEE Chemical Engineering Division (CHED). Dr. Ford Versypt has been recognized with the NSF CAREER Award, ASEE CHED Ray W. Fahien Award and Joseph J. Martin Award, and AIChE CAST Division David Himmelblau Award for Innovations in Computer-Based Chemical Engineering Education. She is an Academic Trustee of Computer Aids for Chemical Engineering Corporation
Paper ID #36889Student Perceptions of Online Learning Effectiveness during the COVID-19QuarantineDr. Shannon L. Isovitsch Parks, P.E., University of Pittsburgh, Johnstown Dr. Shannon Parks is a registered Professional Engineer with 20 years of broad-based experience in the water resources and environmental engineering fields. She holds a Bachelor of Science Degree in Civil Engineering from the Pennsylvania State University and a Masters of Science and doctoral degree in Civil & Environmental Engineering from Carnegie Mellon University. She has been teaching water resources and environmental engineering at University of
pursuing a M.S. in Mechanical Engineering at the Johns Hopkins University.Ms. Sydney Danielle Floryanzia, University of Washington and Johns Hopkins University Sydney Floryanzia is a Ph.D. student at the University of Washington and a GEM fellow intern at the Johns Hopkins University Applied Physics Laboratory. Her research interests include Neuroscience, Chemical Engineering, Learning Science, and increasing opportunity and access to STEM amongst underrepre- sented groups.Jackie SharpWilliam Roberts Gray-RoncalMr. Erik C. Johnson, University of Illinois, Urbana-Champaign ©American Society for Engineering Education, 2023 Empowering trailblazers toward scalable, systematized, research-based
Paper ID #39576Unconventional Applications of Introductory-Level Aerospace EngineeringConcepts: Evaluating Student Engagement and Performance in aFree-Response Exam FormatBenjamin Casillas, Texas A&M University Ben Casillas is a senior aerospace engineering major at Texas A&M University. As an undergraduate researcher at the NUANCED Laboratory, their work focuses on novel presentations of introductory-level curriculum. Outside the lab, their interests include chemical rocket propulsion, spaceflight human systems integration, digital art, and music composition.Dr. Kristi J. Shryock, Texas A&M University
the least important [20]. These faculty then may teach theirengineering students to do the same [9], [20]. Further, engineering students are often exposed toclosed-ended problems that are decontextualized, extending the gap between social and technicalaspects of engineering. The result is that engineers may be unprepared to understand the largercontexts and implications of their work [17], [21]. Thus, social aspects of engineering are bothoverlooked and undervalued in engineering education.Yet, engineering inherently has social outcomes. Engineering artifacts are innately sociotechnicalas some individuals benefit, some are overlooked, and some have power to negotiate change[20]. Further, the definitions of engineering shape who becomes an
Paper ID #39845A Literature Review to Explore a Relationship: Empathy and Mindfulness inDesign EducationMs. Rubaina Khan, University of TorontoDr. Adetoun Yeaman, Northeastern University Adetoun Yeaman is an Assistant Teaching Professor in the First Year Engineering Program at Northeastern University. Her research interests include empathy, design education, ethics education and community engagement in engineering. She currently teaches Cornerstone of Engineering, a first-year two-semester course series that integrates computer programming, computer aided design, ethics and the engineering design process within a project
Paper ID #38960Work-In-Progress: Re-Engineering Engineering: A Collaborative InquiryToward a Solidarity Engineering-Focused FutureDr. Stephen Fernandez, UMass Amherst Steve is currently employed in the Diversity, Equity, and Inclusion office in the College of Engineering at UMass Amherst. He works on outreach, community engagement, and student support and he teaches a class in Engineering Service-Learning. His background is in sustainable energy engineering. He has worked on the modeling and design of stand-alone hybrid photovoltaic / wind turbine systems. His professional experiences include secondary school STEM
Paper ID #38629Evolving Engineering Technology Capstone Projects to Bring StudentsCloser to IndustryProf. Susan Scachitti, Purdue University Northwest Susan Scachitti is a Professor and Chair of the Department of Engineering Management, Systems and Technology at the University of Dayton and Professor Emeritus of Industrial Engineering Technology at Purdue University Northwest. Professor Scachitti consults and teaches in traditional areas of Industrial Engineering which include Total Quality techniques and organizational change.Prof. James B. Higley P.E., Purdue University Northwest JAMES B. HIGLEY, P.E. holds the rank of
forincreasing student success (Olivia Palid, 2023).Figure 1. 2022 Summer Bridge Site DetailFoundational MathDevelopmental math students face many barriers to achievement of STEM degrees and careers,including a fear of, and low confidence in, math, as well as a lack of successful touchstoneexperiences in the subject. Many students report having felt disenfranchised with their mathcourses since middle school. And, while community colleges have done much to address thesystemic barrier of developmental, non-college credit math courses, academic preparation remainsan issue. Community college math faculty teaching the calculus sequence often point to students’lack of understanding and mastery of algebra basics as a significant barrier to their progression
laboratories, project- based learning, and practicum-based assessment. Dr. Ertekin serves as the faculty advisor for the student chapter of the Society of Manufacturing Engineers (S058) and is a member of the College’s Undergradu- ate Curriculum Committee. Involved in research, Ertekin has received funding from the National Science Foundation (NSF), private foundations, and industry. His research has focused on the improvement of manufacturing laboratories and curricula and the adoption of process simulation into machining and addi- tive manufacturing practices. His areas of expertise are in CAD/CAM, manufacturing processes, machine and process design with CAE methods, additive and subtractive manufacturing, quality control
introduced inengineering education in a variety of ways due to workforce demands. However, thedevelopment of engineers' communication skills has been inhibited by "students' attitudes tocommunication, insufficient course content, deficient or inappropriate teaching methods, andlack of opportunity for engineering students to practice communication skills" [5, pp. 91].Understanding these roadblocks along with past success stories can help inform futuredevelopment of communication skills in engineering students. Although many universityengineering programs provide communication related courses, Campi and colleagues emphasizethat it is imperative to provide students with the opportunity to practice applying communicationskills to realistic technical
Paper ID #37873Developing a New Course in Design, Construction, and SocietyDr. Luciana Debs, Purdue University Luciana Debs, is an Assistant Professor of Construction Management in the School Construction Man- agement Technology at Purdue University. She received her PhD from Purdue University Main Campus, her MS from the Technical Research Institute of Sao Paulo. Her current research includes the technol- ogy and teaching within design and construction and the impact of Construction and Education 4.0 in undergraduate curriculum.Dr. Claudio Martani, Purdue University Claudio Martani is Assistant Professor at the
Paper ID #39694Student Self-Assessment of Knowledge to Encourage IndividualUnderstanding of StrengthsDr. Megan Prygoski, Purdue University at West Lafayette (Polytechnic) Dr. Prygoski has been teaching Mechanical Engineering Technology at Purdue University’s South Bend campus for nine years. She has her B.S. in Mechanical Engineering from the University of Arizona and a M.S. and Ph.D. in Mechanical Engineering from the University of Notre Dame. ©American Society for Engineering Education, 2023 Student Self-Assessment of Knowledge to Increase Understanding of
approach of Experiential Learning (EL), Entrepreneurial Mindset(EM), and real-world application using the entrepreneurially minded curriculum, for engineeringand technology courses.The purpose of this study is to highlight findings and lessons learned because of integrating anentrepreneurially minded interdisciplinary project (including bio-inspired design and STEAM)into the engineering technology classroom. Specifically, curriculum changes were implementedinto a course on programming industrial robots (as part of the minor in robotics). This course isdesigned for teaching technology students how to install, maintain, and work with industrialrobots through real-world applications. This course also assists students in discovering thecapability of
authorityfigure, who traditionally was male. Authority has been studied related to other issues likeclassroom and laboratory work, but reading/following directions is not central to these studies[42]. A third possible explanation is that female students who self-select into engineering arebetter students on average than male students, which would involve a subset from other studiesof first-year college students [43]. This third hypothesis could be examined using standardizedtest scores or high school grades or rank. Since most students in the MEB course are in theirsecond semester of their engineering education, only one semester of grade data is available fromtheir university transcripts.When focusing on higher education, few examples of
focus on tissue engineering and peripheral nerve regeneration. At WSU, she taught BE 1300 (”Materials Science for Engineering Ap- plications”) and BME 1910/20/25 (”Biomedical Engineering Design Laboratory”). Melissa also holds a Bachelor’s in Materials Science & Engineering from the University of Michigan and loves being back and teaching at her alma mater! ©American Society for Engineering Education, 2023 Work-in-Progress: KLIQED, A Feedback Tool for Fostering Peer Engagement during Student Oral PresentationsAbstractOral communication skills are important in all academic disciplines (e.g. liberalarts, science, and engineering) and hiring decisions. In
are insights from and methodologies associated with the psychological sciences and digital human- ities. Rockwell is a Research Scientist in the Department of Engineering Education at Virginia Tech. Before moving to Virginia, he was a Research Assistant Professor in the Department of Humanities, Arts, and Social Sciences at the Colorado School of Mines, Lecturer in the Department of Values, Technol- ogy, and Innovation, at Delft University of Technology, Associate Teaching Professor at the University of Michigan-Shanghai Jiao Tong University Joint Institute, and Research Fellow in the Institute of Social Cognition and Decision-making, Shanghai Jiao Tong University. Rockwell holds a PhD from Purdue University
the request to post the link on the undergraduateengineering course they were teaching. Participants were then purposefully selected based on theirresponses to the screening survey. Data from these interviews were transcribed, identified, andanalyzed. As suggested by Creswell and Poth [38], and guided by Saldaña [39], a thematic analysisof the interview data was conducted based on consensus between two coders. The thematicanalysis helped identify patterns in the interview data relating to the important factors perceivedby undergraduate engineering students to be important to their MHW. The resultant eleven themeswere then re-grouped and conceptualized into seven factors as can be seen in Figure 1. Please readour published work about this
students, and saving faculty time. Stylus Publishing, LLC, 2015. [9] Kate J McKnelly, William J Howitz, Taylor A Thane, and Ren´ee D Link. Specifications grading at scale: Improved letter grades and grading-related interactions in a course with over 1,000 students. 2022.[10] William J. Howitz, Kate J. McKnelly, and Ren´ee D. Link. Developing and implementing a specifications grading system in an organic chemistry laboratory course. Journal of Chemical Education, 98(2):385–394, 2021. doi: 10.1021/acs.jchemed.0c00450.[11] Dennis Earl. Two years of specifications grading in philosophy. Teaching Philosophy, 45(1):23–64, 2022.[12] Ella Tuson and Tim Hickey. Mastery learning and specs grading in discrete math. In Proceedings of the 27th
Paper ID #39759Development of entrepreneurial mindset-driven training materials forundergraduate researchersDr. Maysam Nezafati, Georgia Institute of Technology I am a lecturer in the department of biomedical engineering at Georgia institute of technology /Emory University. I have been working on educational research since 2016. My main focus is on problem based learning core courses. But specifically I work onDr. Irene Reizman, Rose-Hulman Institute of Technology Irene M.B. Reizman is an Associate Professor in the Department of Chemical Engineering and the Al- fred R. Schmidt Endowed Chair for Excellence in Teaching at the
to organize thisvaluable work by characterizing the nature and effects of the landscape of stressors experiencedby doctoral engineering students. In Year 1 of this project [21], we employed a longitudinalmixed methods study design to identify the most common and severe stressors experienced by acohort of students at one institution. Drawing from the results of this study and a review of theliterature on graduate student stressors, we developed the Stressors for Doctoral StudentsQuestionnaire for Engineering (SDSQ-E) and administered it twice, in fall 2022 and in spring2023. The SDSQ-E measures the severity and frequency of stressors including advisor-relatedstressors, class-taking stressors, research or laboratory stressors, campus life and
Paper ID #38503Developing a Global Competency Mindset in an International, Faculty-ledProgram in Brazil Focused on Sustainable EnergyDr. Courtney Pfluger, Northeastern University Dr. Courtney Pfluger took a position in Fall 2011 as an Assistant Teaching Professor at Northeastern University as a part of the First Year Engineering Faculty and affiliated Faculty in the Chemical Engineer- ing Department. Dr. Pfluger redesigned and piloted the first-year curriculum which included engineering design and computational problem solving using the Engineering Grand Challenges as real-world appli- cations of global issues. She
Paper ID #36891Say Yes to the Stress: Escape Rooms in Civil Engineering ClassroomsMajor Brett Rocha, United States Military Academy MAJ Brett Rocha is a second year instructor at the US Military Academy in the Department of Civil and Mechanical Engineering. She received her B.S. in Civil Engineering from USMA in 2012, her M.S. in Engineering Management from Missouri University of Science and Technology in 2016, and her M.S. in Civil Engineering from University of Central Florida in 2021. She teaches mechanics of materials, design of steel structures, and design of concrete structures.Dr. Kevin Francis McMullen, United States
-Milwaukee, Milwaukee, WI Grad: 08/2014 Master of Science in Mechanical Engineering, Texas A&M University, College Station, TX Grad: 08/2007 BachelorDr. Phapanin Charoenphol, Texas A&M University Phapanin Charoenphol is an Assistant Professor of Instruction in the J. Mike Walker ’66 Department of Mechanical Engineering at Texas A&M University. She earned her M.S., and Ph.D. from the University of Michigan, Ann Arbor. She teaches thermodynamics, fluid mechanics, engineering laboratory, and senior design studio courses. Her research interests include engineering education and targeted drug delivery. In 2022, she was awarded the ASME Best Teacher Award and earned the ACUE Certificate in Effective College
IIT Delhi for undergraduate studies and Cornell University for graduate work. He worked for nearly 15 years as a materials scientist at the DuPont company and moved in 2004 to Lehigh University. His research interests are in interfacial mechanical properties.Zilong Pan, Lehigh University Zilong Pan is an assistant professor of teaching, learning and technology, his research focuses on emerging educational technologies and innovative methodological approaches in educational practices and studies in STEAM (science, technology, engineering, arts, and mathematics) disciplines.Nathan Urban, Lehigh University Nathan Urban is Provost and Senior Vice President for Academic Affairs at Lehigh University. Urban earned his PhD
way. In an effort to reach all students, he has consistently deployed a host of teaching strategies into his classes, including videos, example problems, quizzes, hands-on laboratories, demonstrations, and group work. Dr. Kerzmann is enthusiastic in the continued pursuit of his educational goals, research endeavors, and engagement of mechanical engineering students.Veronica RothDr. David V.P. Sanchez, University of Pittsburgh David V.P. Sanchez is an Associate Professor in the Swanson School of Engineering’s Civil & Envi- ronmental Engineering department and the Associate Director for the Mascaro Center for Sustainable Innovation at the University of Pittsburgh. He serves as the Program Director for the
Norwegian Centre for Autonomous Marine Operations and Systems (a Centre of Excellence for re- search in Norway) on locomotion control of ground and swimming snake robots. In 2011, he received the Masters degree from the University of Alberta, Canada where he was with the Telerobotic & Biorobotic Systems Laboratory. He joined the Locomotor Control Systems Laboratory at the University of Texas, Dallas, as a Postdoctoral Research Associate in November 2016, where he was using neuromechanical principles in the context of feedback control theory to design wearable robot control systems. His research interests include robotics, control systems, and cyber-physical systems.Prof. Destin Heilman
retirement. At Baylor University since 1998, he teaches courses in fluid mechanics, energy systems, propulsion sys- tems, heat transfer, and aeronautics. Research interests include renewable energy, small wind turbine aerodynamics, and noise generation as it applies to the urban environment. Currently, he designs small Unmanned Aerial System propellers, reducing noise and power requirements.Dr. Liping Liu, Lawrence Technological University Liping Liu is an associate professor in the A. Leon Linton Department of Mechanical Engineering at Lawrence Technological University. She earned her Ph.D. degree in Mechanical Engineering from Uni- versity of Illinois at Urbana-Champaign in 2011. Her researDr. Anthony M. Jacobi