with a dice that is electronically rolled (randomness) by pressingthe “Roll the Dice Button.” The face of the dice is displayed in the “PLAYING AREA.” Thefirst roll of the dice represents the Percentage for the three TQM variables (Table 1). The dice isre-rolled twice more to populate the remaining two variables by selecting ‘Yes’ to the pop-upwindow. Selecting ‘No’ re-starts the roll sequence. Figure 2 summarizes the results of the gamein the form of a chart that includes Cost/Profit, Ethics, and Quality. The user, through the gameplay can see the immediate impact of choices selected not only on the total quality andproduction, but more importantly, on the ethical impact of management choices. The game helpsthe user with a better
thatwould directly impact the community and foster students’ appreciation for the relationshipbetween engineering and social responsibility.Fostering students’ “Base Skills,” a facet of the professional development realm related tosocially responsible engineering, as defined by Canney and Bielefeldt,1 aligns with the project’sconnection between technical abilities and resultant societal benefits. This connection is viewedas imperative for developing future engineers’ attitudes towards human-centered design and theirroles in society.2,3 Similarly, ABET calls for holistic skillsets that encompass both technicalskills and “an understanding of professional and ethical responsibility,” while the NationalAcademy of Engineering has emphasized the
lists under DisciplineSpecific Content a requirement that include “topics related to professional responsibilities,ethical responsibilities, respect for diversity, and quality and continuous improvement” [10].Other commissions within ABET have retained an explicit requirement for lifelong professionlearning and development. The Engineering Accreditation Commission (EAC) has condensedthe Criterion 3 a-k to seven items with number seven being “an ability to acquire and apply newknowledge as needed, using appropriate learning strategies” [11]. The ABET ComputingAccreditation Commission Criterion 5 Curriculum states “The curriculum must combinetechnical, professional, and general education components to prepare students for a career,further study
, invokes a context inwhich “societal actors and innovators become mutually responsive to each other with a view onthe (ethical) acceptability, sustainability, and societal desirability of the innovation process andits marketable products” (Von Schomberg quoted by Schwartz-Plaschg, p. 149). In other words,the language of RRI assumes a very different kind of relationship between actors than does thelanguage of regulation. An awareness of the power of analogies can heighten our sensibilitiesregarding the linguistic choices we habitually make.Where analogical imagination refers to the context evoked by a particular choice of words,analogical reasoning is a form of critical thinking in which we make an implicit comparisonexplicit and explore how the
systematic procedures. Itrequires cultivating ethical values, honing creative skills in engineering, working collaborativelyand iteratively, and solving complex problems in a multidisciplinary environment. TheAccreditation Board of Engineering and Technology (ABET) formally acknowledged theimportance of these notions in their most recent requirements - (students’ outcome 5): “an abilityto function effectively on a team whose members together provide leadership, create acollaborative and inclusive environment, establish goals, plan tasks, and meet objectives.”Project-based teamwork is particularly crucial in a first-year engineering design course. Anexperiential learning environment promotes acquiring essential skills and abilities that will beused
economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability?” The average score for this criterion was a 9.5 indicated a significant educational impact. The entire Perseus II project is directly aligned with this criterion. The fact that the project had an actual mission demonstration and engaged stakeholders and sponsors added Page 26.110.23 tremendously.(d) How did you participation in Perseus II impact your “ability to function on multidisciplinary teams?” This criterion scored a 10. All students indicated that they had significant positive impact on what is a critical skill
. IntroductionEngineering curriculum frequently focuses on technical, analytical, and decision makingknowledge and skills, evident by the common focus of courses on math and physics principles[1]–[3]. Course problem sets and projects routinely focus on determining variables and solvingequations where there is one “right” answer [4]. However, engineering work is inherently bothtechnical and social [5], [6]. To address major problems of today’s world, engineering studentsneed to develop contextual and cultural competencies, ethical responsibility, and socialengagement knowledge and skills, as well as the ability to work across disciplinary boundaries[7]–[10]. Engagement in these skills, which we collectively call “comprehensive engineeringknowledge and skills”, are
affinities foralgorithmic thinking, abstraction, problem decomposition, and producing solutions that can bedone by information-processing agents. This is concerning since few (if any) of the definitionsfor computational thinking mention anything vaguely sociopolitical, such as ethics, social justice,cultural competency [7], or global competency [8].1 Even though computational thinkers areexpected to shift between varying levels of abstraction [10], the omissions imply thatsociopolitical concerns are auxiliary to thinking computationally and, potentially, to being acomputer scientist. If computational thinking is as central to computing pedagogy as researcherssuggest, then there should be concern that the assimilation of students into
] proposed that students’ epistemic practice in SSI are understood through bothargumentation and informal reasoning [6], [13]. Based on an intensive literature review, Sadler [6]concluded that it is hard to assess the quality of student argumentation only by logical reasoningbecause in SSI contexts, everyday life experiences, moral and ethical beliefs, values, and cultureaffect students’ argumentation practices. Duschl also points out that student argumentation in SSIis a reasoning strategy that involves the general reasoning domain of informal logic as well ascritical thinking [10].In most recent research concerning argumentation, Toulmin’s model [14] was adopted as a usefultool to understand logical reasoning of argumentation. However, Toulmin’s
Paper ID #42156The Power of Place: A Critical Examination of Engineering Enculturation &Identity FormationDr. Timothy Duane Reedy, University of Maryland, College ParkDr. David Tomblin, University of Maryland, College Park David is the director of the Science, Technology and Society program at the University of Maryland, College Park. He works with STEM majors on the ethical and social dimensions of science and technology. ©American Society for Engineering Education, 2024 The Power of Place: A Critical Examination of Engineering Enculturation and Identity FormationAbstract
University, Syracuse, NY. Registered Professional Engineer (Ohio). Robinson’s teaching approach comes from an amalgam of academic, industrial (Bell Labs), governmental (VA) and clinical experiences, plus an interest in science and ethics from his undergraduate days.Ms. Loretta Driskel, Clarkson University Since the late 1990’s my passion has been to create engaging, diverse teaching and learning experiences for students and faculty. As the senior instructional designer at Clarkson University, I have presented at conferences such as the Online Learning Consortium and I have presented at a wide variety of other venues including ADEIL; Sloan-C International Online Learning; Sloan-C Blending Learning; eLearning Consortium of
sustainability. Bielefeldt is also a licensed P.E. Professor Bielefeldt’s research interests in en- gineering education include service-learning, sustainable engineering, social responsibility, ethics, and diversity. American c Society for Engineering Education, 2021 Kindness in Engineering EducationAbstractIn light of the disruptions in higher education brought about by COVID responses, faculty wereencouraged to be more accommodating of student issues. These edicts largely could be construedas showing kindness. But why should faculty kindness toward students only be manifested in theface of a global pandemic? Even before the pandemic there was a growing
are four main attributeswithin this dimension: 1) The epistemological openness attribute captures the inclination of anengineer to “recognize and value the subjective experiences and perspectives of others as validand important source of knowledge” [1, p. 135]. Epistemological openness allows a researcher tocapture the thought process behind the various actions of an engineer. 2) The second attribute isthe micro to macro focus which informs the need for an engineer to consider the systems-levelimplications of their action along with the individual level implications. 3) The reflective valueawareness attribute covers the need for ethical and professional impact of an engineer’s action.The ability to reflect on their own values and improve
ethics. Her book Extracting Accountability: Engineers and Corporate Social Responsibility will be published by The MIT Press in 2021. She is also the co-editor of Energy and Ethics? (Wiley-Blackwell, 2019) and the author of Mining Coal and Undermining Gender: Rhythms of Work and Family in the American West (Rutgers University Press, 2014). She regularly pub- lishes in peer-reviewed journals in anthropology, science and technology studies, engineering studies, and engineering education. Her research has been funded by the National Science Foundation, the National Endowment for the Humanities, and the British Academy. American c Society for Engineering
, knowledge of changes in student attitudes were sought as a response to a coursedeveloped for first year engineering (FYE) majors [12]. This course, Engineering and Society,contains elements that are common among FYE courses such as the study of engineeringdisciplines, ethics, and a team-based design project, yet it uniquely focuses on the connectionsamong engineering/technology and society and the development of technology within a societalcontext. This allows us to integrate ethics and the engineering design experience with thetechnology and society content, which provides a platform for analyzing current technologicalsystems and exposes students to the breadth and diversity of engineering. Aside from meetingABET and University-level outcomes
● Clear conclusion stated interaction between living and non-living materials and systems.(c) Design a system, component, or ● Final design meets or exceeds client-specified criteria process to meet desired needs within ● The design evaluation considers environmental, ethical, health, realistic constraints such as economic, safety, regulatory constraints environmental, social, political, ● The design evaluation considers manufacturability, sustainability, ethical, health and safety, social, political, and economic constraints manufacturability, and sustainability(d) Function on multidisciplinary and ● Positive peer evaluations diverse teams and provide leadership
perspective on how individual professions studytheir engineering education profession as it relates to diversity and inclusiveness. Each year, thenominations resulted in five or six finalists arising from different divisions which included the K-12 and Pre-College Engineering, First Year Programs, Liberal Education/Engineering andSociety, Mechanical Engineering, Entrepreneurship and Engineering Innovation, andMultidisciplinary Engineering Divisions in 2015, the Civil Engineering, Chemical Engineering,Educational Research and Methods, Engineering Ethics, Women in Engineering Division and thePacific Southwest Section in 2016, and the Aerospace Division, Diversity Committee, LiberalEducation/Engineering & Society Division, Mathematics Division, and
. Although they are mostly working outside of theinstitutional setting, especially as they work to establish alternative space and practices outside ofthe dominant discourse, the work and motivations of both feminist hacker collectives and opensource science hardware communities have implications for thinking through how to organizeand enact real-world change in terms of pedagogy, design, and more deeply weaving ethics andexplicit value-systems into engineering education and practice.In a previous paper, we sought lessons for change in engineering education from movements notonly within science and technology cultures, but also within higher education institutionalsettings. Prior higher education change movements we examined include the efforts to
; • Explain the characteristics of effective team behavior2. Be familiar with and be able to apply the engineering and the importance of teamwork in an engineeringdesign process; environment. 3. Work on a team effectively to solve problems, • Collaborate effectively to solve problems, completecomplete projects, and make presentations; projects, and present findings and results. 4. Design and assemble simple projects; • Explain the interdisciplinary nature of solving5. Explain the importance of having high ethical complex engineering problems. standards; • Demonstrate the global significance of specific6
themes, real world examples, and new topics such as sustainability. The rationalefor implementing the cases within a traditional laboratory was to determine if the cases impactedstudent engagement; helped students to see the link between laboratory exercises and real worldapplications; increased student’s critical thinking levels above the lower levels of Bloom’sTaxonomy of knowledge and comprehension for their experimental data; and improved thequality of student laboratory reports. The new cases developed addressed: 1) E-waste to teachenvironmental ethics and statistical analysis of data, 2) the 2014 Duke Coal Ash Spill inDanville, VA to teach physical and chemical water quality and treatment; 3) a Confined AnimalFeeding Operations water
some studies found substantial mental health challenges for CSt, rates ofanxiety and depression in CSt did not vary significantly by ethnicity. [26] Similarly, for CSt ingraduate school, there was not a significant difference in motivation, satisfaction, or stress basedon gender. [27] 4.4 Assets of Caregiving StudentsThe studies included in this review catalogue many assets that CSt bring to their educationalexperiences. First, their presence encourages a caregiving ethic in schools. [28] This ethic may berelated to how the experience of caregiving impacts their priorities and goals: one study showedthat educational aspirations changed after becoming a parent as students (in this case, Latinamothers) preferred work that allowed them to help
attributes for global engineers based on Washington AccordGenerally speaking, PBL programs are also effective for acquiring Washington Accord 11 GraduateAttribute Profile (WA11GAP), which are essential requirements for future global engineers [8]. (1) Engineering Knowledge (2) Problem Analysis (3) Design/development of solutions (4) Investigation (5) Tool Usage (6) The Engineer and the World (7) Ethics (8) Individual and Collaborative Team work (9) Communication (10) Project Management and Finance (11) Lifelong learningThese 11 items comprise a comprehensive set of knowledge, skillsets, and mindsets. Because of the designflexibility, it is sufficient to incorporate these items into PBL course contents. In the case of this techno-socio PBL, this
pedagogy, fairness in AI, disinformation, social justice addressing theinequities of society, and ethics/professionalism topics. In most of these topics, equity incomputing is still forming and not widely seen as an integral part of the discipline.N. Washington [31] discusses the glaring omission of non-technical issues from the CScurriculum that would allow CS students, and future professionals, to understand, analyze, andoffer solutions about the inequity and lack of representation that exists in computing. Dr.Washington argues that there is a need for all CS students to have a level of cultural competenceso that students can begin to understand, critically analyze and look for solutions that willimprove equity in our field. Another CS Educator
the global context in their work [1]. This involves acknowledging and respectingcultural differences in design, implementation, and decision-making processes. Developing thesecompetencies provides and supports effective communication which is crucial for globalcollaboration. Engineers need to be adept at expressing complex technical concepts in a way thatis understandable across different cultures and backgrounds.Global competencies provide a scaffold to work in diverse teams, bringing together individualswith different skills, backgrounds, and cultural perspectives to address global challenges.Providing educational learning opportunities in social responsibility through ethical decision-making is important as it aligns with ethical
civil and environmental engineering.Dr. Nicole Farkas Mogul, University of Maryland, College Park Nicole Mogul is a professor of engineering ethics and Science, Technology and Society at the University of Maryland, College Park.Dr. David Tomblin, University of Maryland, College Park David is the director of the Science, Technology and Society program at the University of Maryland, Col- lege Park. He works with STEM majors on the ethical and social dimensions of science and technology. David also does public engagement with science andAndrew Elby, University of Maryland, College Park Andrew Elby’s work focuses on student and teacher epistemologies and how they couple to other cognitive machinery and help to drive
quality, ethics, and equityconsiderations outlined in the project proposal and updated our methods and theories tostrengthen these considerations. We documented the process and justification for updating ourproject theories and methods from the original proposal in a ASEE 2022 conference paper [1].Current StatusConceptual ModelDuring the first year of the project, we developed propositions and a conceptual model toillustrate how localized, structural features unjustly shape the demands and opportunitiesencountered by students and influence how they respond. Our model highlights mechanisms anddynamics at work in influencing the experience, learning, or persistence of students inundergraduate engineering programs. This lens should prove useful for
program aimed to create an experience that took students beyond the development of technicalcompetence in science and engineering and provided an expertise particularly on research and innovationin various areas of energy and bioengineering. Seminars and workshops complemented the programproviding students skills in areas such as laboratory safety, literature searching, entrepreneurship, effectivementoring and research ethics. The weekly group meetings with the program PIs fostered interdisciplinarycommunication between REUs which strengthened collaborations. The community was furtherstrengthened in the second year by incorporating more events with lab mates and students living togetheron campus.The RET program was designed to allow undergraduate
accessible to all students.” [4] In engineering, the hidden curriculum includesprofessional socialization, processes of developing self-efficacy, navigation of internships,professional ethics, and numerous other domains that may be implicitly addressed duringfoundational courses but can be navigationally frustrating or undervalued experiences fortransfer students [5]. Mentoring supports transfer students by establishing trust, buildingrelationships, and developing interconnectedness with faculty and peers. APEX scholars receiveformal and informal mentoring from faculty, industry, peer mentors and each other.Several research questions are posed in this work, which guide data collection. The team seeksto examine: (1) how well APEX recruitment
sequence in the GEARSET pre-engineering pathway outlined above, admission requirements to the program (and thus thedefinition of academically talented for the S-STEM grant) was set at High School GPA of 3.0 orabove and enrollment in MATH 1330. To take MATH 1330 students must have either a 22 ACTmathematics subscore, an SAT math score of 540 or a score of 61 on the online Assessment andLEarning in Knowledge Spaces (ALEKS) system.• GNEN 1010 Professional Development will provide students with information aboutprofessionalism, ethical responsibility, the engineering code of ethics, the importance of, and theneed for, lifelong learning, contemporary issues, the impact of engineering in a global andsocietal context, working on multi-disciplinary teams