of competence ● Validated and reliable student performanceTo answer the Research Question, teaching can be redesigned to support students in transfertheir knowledge and skills by integrating the transfer of learning and authentic assessmentconcepts displayed in Table 1.MethodologyBased on an undergraduate engineering program at the Singapore Institute of Technology,students are exposed to simulations using finite element analysis (FEA) and computationalfluid dynamics (CFD) as part of their Year 1 engineering foundation [15], [16]. In Year 2, thestudents are taught the Mechanical Simulation (M&S) module to learn how to solve ill-structured
at a private, research I universitycompleted surveys asking about their perceptions of norm-referenced exams with means in the 20’svs. those with means in the 60’s.The results overwhelmingly show that students found exams with means in the 20’s—but not thosewith means in the 60’s—discouraging and as evidence of bad and uncaring teaching. Studentsreceiving an “A” for exam scores in the 30’s were unlikely to feel proud of their accomplishment andwere highly unlikely to feel that they had learned what the instructor expected. These same students,however, did feel proud when an “A” was based upon an exam score in the 80’s. Students were alsomore likely to consider cheating and were less motivated to study when the median score was in the20
records to confirm relevance; 22 records were excluded at this stage. Throughthis process, 47 records were identified as relevant to the present topic. See Figure 1 for thecomplete PRISMA flow diagram [23].The following data items were extracted from all relevant articles: country in which study wasconducted; country (or countries) of author(s); aim of paper (or study); funding source(s);relevance to STEM educational setting; whether the technology was tested with the population ofinterest; study method; start & end date of data collection; inclusion & exclusion criteria forsample population; total number of participants; technology type; how was the technology wasused; outcome(s) measured; result of the intervention(s).ResultsThis
, Boulder Dr. Wendy Chi is director of ABC Research & Evaluation, as well as a research analyst at Jefferson County Public Schools in Colorado. Dr. Chi holds a Ph.D. in Educational Foundations, Policy, and Practice from the University of Colorado at Boulder. Her research interests include educational equity and access for underrepresented students, with a specific focus on underrepresentation in STEM. c American Society for Engineering Education, 2020Developing Meaningful Studies of Student Success with Equity in Mind –Considering Context (Experience Report)AbstractThe National Science Foundation Scholarships in Science, Technology, Engineering and Math(S-STEM) grants are designed to support
, academically talented students. An innovative scholarship program developedand implemented at Florence-Darlington Technical College, Florence, SC has achieved an 81.8%on-time graduation rate for students in engineering technology programs and other advancedtechnologies by addressing a barrier referred to as the “digital divide” (NSF DUE #0422405,#0806514, #1259402). A technology support element was added to a National ScienceFoundation-funded S-STEM scholarship program in 2004 to address a well-documented needamong prospective scholars. Many scholarship recipients did not have access to a personalcomputer with the software and capability to do assigned work when off campus. To besuccessful, students were making extra trips to the campus to work in an
/ Caucasian 566 438 1004 Hispanic / Latino 84 62 146 Multiracial 44 73 117 Other 40 34 74 Total 1043 936 1979InstrumentParticipants completed the Student Attitudes toward STEM (S-STEM) survey, developed by theFriday Institute for Educational Innovation (2012), assessing attitudes toward science,technology, engineering and mathematics as well as postsecondary pathways and careerinterests. The S-STEM survey was validated and found to be reliable with this sample ofparticipants (Friday Institute for Educational Innovation, 2012, Unfried, Faber
low-income families, we have implementeddiverse support programs, including co-curricular and outreach activities. These initiatives weremade possible through the NSF’s S-STEM grant, awarded to us in August 2022. The project aimsto prepare talented minority and underrepresented students to successfully enter computing-relatedworkforce or graduate program to meet local and national needs, which would be also helpful forincreasing the diversity of computing field. The purpose of this paper is to spotlight our ongoingefforts, provide an overview of the outcomes achieved through these initiatives, and outline ourforthcoming plans for continued support and enhancement.Program Description and Supporting ActivitiesOur S-STEM program aims to empower
-efficacy and engineeringidentity, thereby facilitating the transition of LIAT undergraduates to graduate-level programs;and (3) it aspires to cultivate leaders proficient in technology, entrepreneurship, and innovation,who will contribute to and fortify the economy of the South Coast of New England—a regionnoted for its diversity and post-industrial economic challenges marked by significant poverty.ResultsIn its inaugural year, the AccEL program generated a large applicant pool, with 46% of eligiblestudents applying, the cohort included 8 eligible female students and a substantial number fromunderrepresented racial/ethnic backgrounds. Eight M.S. students were successfully recruited intothe first cohort of AccEL S-STEM scholars, reflecting
Blocks(i) We will utilize the code blocks editor for listening to an Arduino input pin. Next, the analogvalue or digital state will be print out in the SerialM onitor window. To open the code panel, astudent needs to click the “Code” button.(ii) Next, s/he is asked to click on the SerialM onitor which is located at the bottom of the codepanel.(iii) To run the Arduino code, s/he should click “Start Simulation”, and observe the numbers inthe Serial Monitor during the interaction with the potentiometer. As the potentiometer input valuechanges by moving the pointer on the dial, the serial output value will change accordingly. Sincethe circuit includes two independent Arduinos, students can click back and forth between the twoArduinos while the
one sability to contribute to the level of their talent is an ethical and professional responsibility to thefield.This paper shares some early results from our broader NSF-funded project, titled Identif ingMarginalization and Allying Tendencies to Transform Engineering Relationships, or I-MATTER. The project s research questions are: 1. What does marginalization look like within engineering classrooms where teamwork is a primary feature? 2. How is marginalization legible (or not) to instructors at the classroom level? 3. What are the different ways that instructors respond to incidents of peer-to-peer marginalization? 4. How might the lessons of this work be implemented to systematically alert instructors when
Scholarship ProgramIntroductionThere is a lack of low-income community college students who successfully transfer to four-year-institutions, graduate with an engineering baccalaureate degree, and enter the STEMworkforce/graduate school [1,2,3]. To remedy this situation, the current project, funded throughan NSF S-STEM grant, developed the “UC Irvine Pathways to Engineering Collaborative” tohelp low-income students from diverse backgrounds to successfully transfer to and persist in theengineering program of a four-year university. The designed program targets the population ofstudents who have the ambition to pursue engineering degrees, but often lack the resources orexposure to engineering opportunities. The aim of the project is to a) increase the
students in pursuing their undergraduate studies.AcknowledgementsPartial support for this work was provided by the National Science Foundation Scholarships inScience, Technology, Engineering, and Mathematics (S STEM) program under Award No.2130428. Any opinions, findings, and conclusions or recommendations expressed in this materialare those of the author(s) and do not necessarily reflect the views of the National ScienceFoundation.ReferencesApriceno, M., Levy, S. R., & London, B. (2020). Mentorship during college transition predicts academic self-efficacy and sense of belonging among STEM students. Journal of College Student Development, 61(5), 643-648. https://doi.org/10.1353/csd.2020.0061Bagès, C., & Martinot, D. (2011
ignored the significantdifferences-in-kind between researchers’ and instructors’ knowledge. Upon reflection it is asmall leap from the constructivism we hope to apply in our classrooms to a more collaborativemodel of curricular innovation and adoption.References1. Brown, S. A. & Montfort, D. B. Curricular Materials and Methods for Student Conceptual Understanding in Mechanics of Materials. in Annu. Conf. Am. Soc. Eng. Educ. (2013). Page 26.1085.62. Brown, S. A., Findley, K. & Montfort, D. B. Student Understanding of States of Stress in Mechanics of Materials. in Proc. Am. Soc. Eng. Educ. Annu. Conf. (2007). at 3
child plays with, what books their child reads, and where their childgoes to school. As a result, a student’s exposure and perception of different career disciplinesand professional roles is highly influenced by the introductory actions of parents.Parents themselves can serve as role models for engineering if they themselves are engineers [4].Studies have found that children are often more literate in the professions of their parents and asa result occupational inheritance may occur. This phenomenon has been found to occur infamilies in which a parent, sibling, or other relative(s) are engineers as well as in families withmedical professionals and lawyers. [15]Parents also provide support for their children when selecting majors [4]. In fact
evaluation work includes evaluating teamwork models, broadening participation initiatives, and S-STEM and LSAMP programs.Dr. Joyce B. Main, Purdue University-Main Campus, West Lafayette (College of Engineering) Joyce B. Main is Associate Professor of Engineering Education at Purdue University. She holds a Ph.D. in Learning, Teaching, and Social Policy from Cornell University, and an Ed.M. in Administration, Planning, and Social Policy from the Harvard Graduate School of Education. c American Society for Engineering Education, 2020 Military Veteran Students’ Pathways in Engineering Education (Year 6)AbstractThis National Science Foundation (NSF) Research in Engineering Education (REE)-fundedproject
good physics student’ andinterest is defined as ‘desire/curiosity to think about and understand physics’. Performance andcompetence are distinguished by the difference between belief in ability ‘to perform [a] requiredphysics task’ and ‘to understand physics content’ respectively. Figure 1: Adapted visualization of Hazari et al.’s framework for ‘identification with physics’ per critical science agency [11]. In 2013, Godwin et al. used critical science agency and Hazari et al.’s physics identity framework toexplore engineering identity as a predictor of engineering major in college [13]. According to Godwin et al.,engineering identity relies heavily on strong mathematics and science identities yet should be studied as itsown entity, since
Electrical Engineering (ICITEE). https://doi.org/10.1109/icitee49829.2020.9271781Sense of Belonging References: [2] Walton, G. M., & Wilson, T. D. (2018). Wise interventions: Psychological remedies for social and personal problems. Psychological Review, 125(5), 617–655. https://doi.org/10.1037/rev0000115 [3] Walton, G. M., & Brady, S. T. (2017). The many questions of belonging. In A. J. Elliot, C. S. Dweck, & D. S. Yeager (Eds.), Handbook of competence and motivation: Theory and application (pp. 272–293). The Guilford Press. [4] Walton, G. M., & Cohen, G. L. (2007). A question of belonging: Race, social fit, and achievement. Journal of Personality and Social Psychology, 92(1), 82–96. https
paper test in 2014 withthose taking the paper test in 2013 were found.Table 1: Comparison of average PSVT:R scores for first-time students (maximum scorepossible = 30) Type of test and year Average PSVT:R Average PSVT:R Average PSVT:R taken score score of females score of males LMS in 2014 22.5* 20.3 23.4** (s=4.88, n=430) (s=4.74, n=116) (s=4.66, n=314) Paper in 2014 23.8 20.8 24.5 (s=4.32, n=454) (s=4.39, n=90) (s=3.96, n=364) Paper in 2013 23.7 21.2 24.3
firstattempt, while additional attempts are recognizing the fact that they are still in the learning phaseand may require some “guidance”. No partial credit is given for problems with incorrect answer.The overall strategy is to simulate learning progression from educational environment toindustry/work setting. Although these modifications were initially greeted by students withapprehension, at the end of the course students recognized the benefits of this structured andrigorous approach and expressed very positive attitude towards the examination strategy.ResultsThe study was performed on the results collected during eight semesters (S’13 – F’16). Thecourse modification was made in the Fall ’14 and implemented in the Spring ’15. The reportedresults
technical writing skills in STEMdisciplines is well documented. Solutions have been proposed, implemented, and inconsistently sustained.One approach to improving disciplinary technical writing is through Writing Assignment Tutor Trainingin STEM (WATTS). WATTS is an interdisciplinary, collaborative approach in which STEM faculty workwith writing centers and generalist peer tutors to provide just-in-time assignment-specific feedback tostudents. WATTS research was funded by an NSF IUSE collaborative grant (award #s 2013467,2013496, & 2013541). In WATTS, the STEM instructor collaborates with the writing center supervisorand prepares materials for the tutor-training including assignment examples, a glossary of terms, areas ofconcern, and the
Education, 2016 123rd ASEE Annual Conference and Exposition New Orleans, LA, USA, June 26-29, 2016 Zhang, Z., Zhang, M., Chang, Y., Esche, S. K. & Chassapis, C. A Virtual Laboratory System with Biometric Authentication and Remote Proctoring Based on Facial Recognition Zhang, Z., Zhang, M., Chang, Y., Esche, S. K. & Chassapis, C.AbstractVirtual laboratories are used in online education, corporate training and professional skilldevelopment. There are several aspects that determine the value and effectiveness of virtuallaboratories, namely (i) the cost of development which includes the cost of
workplaces, which can positively affect productivity,commitment, and performance [20].Theoretical FrameworkWithin engineering education, the role of values remains relatively underexplored (perhapsbecause engineering culture often positions itself as free of values or biases), but outside ofengineering education, examining these issues is not new. Researchers in social andorganizational psychology have examined values through numerous approaches and frameworks,e.g., [46]-[49]. For this study, we turn to Schwartz et al.’s values framework [50] [51], which weleverage due to its seminal and popular nature and proven utility in understanding how valuesinfluence behaviors and priorities in a range of domains (e.g., workplaces [51] [52]). WhileSchwartz et
about 40%. 1028 1026 959 962 926 1117 1160 1179 1227 1196 989 1114 1164 100 90 s Enroll Calculus I t 80 P u Pass Calculus I e d C 70 r e a Enroll Calculus II c n l 60 e t c Pass Calculus II n s u t 50 l a s Enroll Multi‐ u g t 40
papersthat were reviewed: 5 in pre-college, 25 in college, and 6 in post-college. A code sheet was developed using the categories necessary to answer the two researchquestions. The categories for the code sheet were ethnicity, race, gender, language(s), generationin the U.S., generation in college, and institution (college-only). When reviewing each article,the authors noted how each category was used for the purpose of data analysis. Additionally, inthe review of each article, the authors also noted the main conclusions of each study as theserelated to the status of Latinxs in engineering. After reviewing the majority of the assignedarticles, the authors met to review the preliminary findings and patterns they saw in theirrespective notes
STEM Scholars Bridge Program for Increased Student Retention, Internship and Career Exploration at University of Southern Maine NSF Awardees Poster Session 2015 ASEE Conference Page 26.1397.2 AbstractIn the summer of 2012, the National Science Foundation (NSF) awarded the University ofSouthern Maine (USM) with a scholarship grant for “STEM Opportunities for AcademicallyCapable and Financially Needy Students: University of Southern Maine STEM ScholarsProgram” (S-STEM
project.References[1] W. Schilling, “Issues effecting doctoral students returning to engineering educationfollowing extensive industrial experience,” in Proceedings of the American Society forEngineering Education, June 2008, Pittsburgh, PA.[2] M. L. Strutz, J. E. Cawthorne, D. M. Ferguson, M. T. Carnes, and M. Ohland, “Returningstudents in engineering education: Making a case for ‘experience capital’,” in Proceedings of theAmerican Society for Engineering Education, June 2011, Vancouver, BC.[3] D. L. Peters and S. R. Daly, “The challenge of returning: Transitioning from anengineering career to graduate school,” in Proceedings of the American Society for EngineeringEducation, June 2011, Vancouver, BC.[4] D. L. Peters and S. R. Daly, “Why do
(Exam (Final exam, intervention) improvement 1, improvement1, control) control) intervention) Data Set 1A: X = 75.4 X = 77.8 X = 6.0 X = 6.6 Control vs. All intervention, participants s = 12.9 s = 12.8 s = 10.9 s = 10.1 Prof. X N = 30 N = 27 N = 30 N = 27 (Fall 2015) X = 67.5 X = 69.8 X = 8.8 X = 8.6 Q1
1.210 Using VR helped provide a better overview of the content. 134 3.51 1.237 Using VR helped to identify the critical concepts from topics in the lesson(s). 134 3.52 1.225An important aspect of the VR lesson design was usability including opportunities for interactionwith the lesson. All the 10-items of this dimension registered mean responses in the direction ofagreement with the items (Table IV). The responses indicated the user interface was userfriendly. The average of the responses was highest for the ability to review the lesson andunderstand the mistakes.Table IV: VR Lessons Usability (N = number of respondents, SD = standard deviation) Overall, I am satisfied with how easy it was to understand
of origami task (O-folding instructions 19 . LI-2).Modules were provided online via the course management system. Participants had one week tocomplete each module and submit the appropriate task deliverable(s) via the online system. Thedeliverable for each origami-based module was a photograph of the object(s) they created (Figure2). The deliverable for each CAD-based module was a SketchUp file of their final drawing(s)(Figure 4). Figure 4: Deliverable of CAD task (C-LI-1).Figure 3: Example of CAD task (C-LI-1) mul-tiview orthographic drawings
ethics and social responsibility and how these views are influenced byorganizational/institutional cultures. We anticipate that our findings will also benefit engineeringstakeholders in both academia and industry, namely by generating new insights about what typesof learning environments and experiences have the biggest impacts on how engineering studentsand professionals perceive and practice ethics, social responsibility, and related concerns.AcknowledgmentsThese materials are based in part upon work supported by the National Science Foundation underGrant Nos. 1449479, 2024301, and 2130924. Any opinions, findings, and conclusions orrecommendations expressed in these materials are those of the author(s) and do not necessarilyreflect the views