. Richards, “Curriculum Approaches in Language Teaching: Forward, Central, and Backward Design,” RELC J., vol. 44, no. 1, pp. 5–33, Apr. 2013, doi: 10.1177/0033688212473293.[10] J. Emory, “Understanding Backward Design to Strengthen Curricular Models,” Nurse Educ., vol. 39, no. 3, p. 122, Jun. 2014, doi: 10.1097/NNE.0000000000000034.[11] K. Y. Neiles and K. Arnett, “Backward Design of Chemistry Laboratories: A Primer,” J. Chem. Educ., vol. 98, no. 9, pp. 2829–2839, Sep. 2021, doi: 10.1021/acs.jchemed.1c00443.[12] K. M. Cooper, P. A. G. Soneral, and S. E. Brownell, “Define Your Goals Before You Design a CURE: A Call to Use Backward Design in Planning Course-Based Undergraduate Research Experiences,” J. Microbiol
Paper ID #38654Board 88: Work in Progress: Impact of Electronics Design Experience onNon-majors’ Self-efficacy and IdentityTom J. Zajdel, Carnegie Mellon University Tom Zajdel is an Assistant Teaching Professor in electrical and computer engineering at Carnegie Mellon University. Dr. Zajdel is interested in how students become motivated to study electronics and engineer- ing. He has taught circuits, amateur radio, introductory mechanics, technical writing, and engineering de- sign. Before joining CMU, Tom was a postdoctoral researcher at Princeton University, where he worked on electrical sheep-herding of biological
is devoid ofresearch that definitively identifies the most effective pedagogical method for introducingstudents to engineering ethics” [4, p. 677]. Perhaps most tellingly, the only clear qualification forteaching engineering ethics is being “enthusiastic about and comfortable with discussing ethicalissues and the social implications of engineering” [4, p. 680]. Barry and Herkert express this lackof clarity when they conclude that “although a background and experience in philosophy andengineering might make an individual well prepared to teach engineering ethics, a well-preparedinstructor from history of science or technology, technical communications, science andtechnology studies, and so forth could be equally qualified” [4, p. 680]. This
large public state university and taking part in the same researchproject. The internship was an 8-week program in the Biomedical Engineering (BME)Department funded by the Massachusetts Life Science Center (MLSC). All three students wereworking in the same lab co-hosted and mentored by the two laboratory Principal Investigators, aswell as undergraduate and graduate students in the lab. In-depth interviews with the three internsand their parents/caregivers were conducted and analyzed to understand parental relationships,mentorship relationships, and components of the home environment in developing STEMidentity and interest. Faculty mentors were also interviewed and provided perspectives on skillsets and confidence coming into the internship and
statistical design methods combined withfundamental naval architecture principles leading to an individual design by the end of the firstsemester. Students then select one of their designs and build it during the spring. Coursegraduates have the option to serve as mentors, teaching aides and course instructors, buildingtheir leadership, technical and communication skills. At the United States Naval Academy(USNA), the fourth-year students build either an off-the-shelf design or one of their own. Thestudents build their boat from construction plans through finishing with decreasing amounts ofguidance from instructors. By the end of the course, students can read plans and determine viableconstruction steps independently and recognize when a design might
without using the scientific method and experimentation in laboratories, iv)separating mathematics from science, and v) specializing teachers in their disciplines withoutpromoting multidisciplinary teamwork.The holistic approach of the four STEM disciplines seeks to remove barriers between thesedisciplines. STEM education seeks to promote educational transformations in teaching to achievedigital literacy, in educational objectives to develop new skills and knowledge, in educationalinstitutions to improve infrastructure and management, in the role of the teacher to become afacilitator, in students to learn, in educational resources to adapt them to greater interaction andaccess to more information [35].From the above definitions, it is necessary
discussing these issues [1]. 4. Create case studies. Consider what pedagogical approaches may be effective to achieve the envisioned competencies and informed decision making. Case studies may be a productive direction in which to begin. It could be useful to examine what case studies might be suitable for teaching in this area [1]. 5. Develop new dissemination approaches. Developing literature accessible to both the public and educators should be a priority. There is a need for more widespread promotion of the division’s work. Materials that empower individuals to make more informed decisions on technological issues should be disseminated widely. The division should consider a working group to examine
around 14 years of teaching experience in undergraduate engineering and technology education. His research interest is to explore, understand, and enhance ways to promote self-directed, self-regulated life-long learning among the undergraduate engineering student population. Various pieces of his research efforts are intended to converge into an inclusive instructional design for undergraduate engineering students. ©American Society for Engineering Education, 2023 1 Institutional Role in the Mental Health and Wellbeing of Undergraduate Engineering Students: Student
of Philosophy) in Electrical Engineering at the University of New South Wales, Australia, in 2019. He is cur- rently a Ph.D. student in the Energy Systems, School of Electrical Engineering and Telecommunications, UNSW. His research interests include power engineering education, curriculum design and development, and condition monitoring of power system equipment.Dr. Jayashri Ravishankar, University of New South Wales A/Prof Jayashri Ravishankar is a Scientia Education Fellow and Associate Dean (Education) in the Fac- ulty of Engineering at the University of New South Wales (UNSW), Sydney. Her teaching and research interests include power system modelling, analysis and control, renewable energy integration, smart
Paper ID #37173GIFTS: Building a sense of connection to campus and engineering identitythrough information literacyDr. Jessica Ohanian Perez, California State Polytechnic University, Pomona Jessica Ohanian Perez is an assistant professor in Electromechanical Engineering Technology at Califor- nia State Polytechnic University, Pomona with a focus on STEM pedagogy. Jessica earned her doctorate in education, teaching, learning and culture from Claremont Graduate UniversityMr. Paul Hottinger, California State Polytechnic University, Pomona Paul R. Hottinger is an associate librarian in the Research and Instruction Services unit
with the handling and correct application of tools, instruments, and laboratory equipment. • encourage group work and student integration. • develop competence in oral and written communication. • encourage the search for technological innovations in the development of engineering projects.Figure 1 - Objectives of an integrated project This work aims to present the details of the integrated and multidisciplinary project,applied from 2019 to 2022 in the Control and Automation Engineering course at the MauáInstitute of Technology. During this period, around 40 students per year were analyzed,always from the 4th year of the course, divided into approximately 10 teams per year
professor and was promoted in 2012 to associate professor. He has over 25 combined years of increasing responsibilities in industry and in academia, in-cluding at the Centre for Development of Telematics (C-DOT), a telecommunications technology arm of the Indian government, the Indian Institute of Science (IISc.), Bangalore, and Villanova University, PA. Nathan received his BS from the University of Mysore, a postgraduate diploma from the Indian Institute of Science, an MS from Louisiana State University, and a PhD from Drexel University. He worked in electronic packaging in C-DOT and then as a scientific assistant in the robotics laboratory at IISc. in Bangalore, India, and as a postdoc at the University of Pennsylvania in
during the I-CUREs session for students to gain a betterunderstanding of civil engineering in a comprehensive manner.During the lab tour, students were given a realistic view of theprofession and were able to develop a sense of professionalcognition. Through immersive observation and participation,such as listening to senior or graduate students introducing thefunction of each lab, what they are doing recently in these labs,including the show of drones flying and controlling, 3-Dprinting, the concrete canoe building, etc., students will knowhow the profession fits them and if they intend to learn it in thefuture. Likewise, high school students have the same opportunity tovisit laboratories, observe and participate in cutting-edgetechnology
Paper ID #40546Work in Progress: Impact of individualized personal development projectsin a Multidisciplinary Capstone course on project success and studentoutcomesProf. Sean Knecht, Penn State University Sean Knecht is an Associate Research Professor in the School of Engineering Design and Innovation (SEDI) at Penn State. He is the director of the Cross-disciplinary Laboratory for Integrated Plasma Sci- ence and Engineering (CLIPSE) which investigates physical-plasma for a wide variety of applications including medicine, sustainability, agriculture, and nuclear fusion. ©American Society for
Implementation: The foundation for this new design course was based on previousimplementations of electrospinning in senior design projects [13, 14], educational modules [15,16, 17], and research courses [18, 19, 20]. However, the novelty of this course was its goal ofcontrolling ambient conditions to improve manufacturing electrospun fibers. Specifically, studentsin teams of 4-5 were tasked to design an electrospinning system that could monitor temperature orhumidity and regulate the appropriate ambient parameter to stay within an ideal range.The course was designed to be a required 2-credit hour course that would be held once a weekduring a standard 3-hour laboratory period with ~20 students (5 teams). The course was led by oneprimary instructor and
Paper ID #38528Deep Learning Projects for Multidisciplinary Engineering Design StudentsMr. Robert L. Avanzato, Pennsylvania State University, Abington Robert Avanzato is an associate professor of engineering at the Penn State Abington campus where he teaches courses in electrical and computer engineering, computer science, and robotics. His research interests are mobile robotics, artificial intelligence, computer vision, deep learning and virtual environ- ments. ©American Society for Engineering Education, 2023 Deep Learning Projects for Multidisciplinary Engineering Design StudentsAbstractDeep
, Mexico City Campus. She obtained a Ph.D. in Computer Science from the Tecnol´ogico de Mon- terrey. She is co-leader of the Advanced Artificial Intelligence research group. She is responsible for the Cyber-Learning & Data Sciences Lab. She belongs to the National Research System of Mexico (SNI level II), the IEEE Computer Society, the IEEE Education Society, the Mexican Society of Artificial Intel- ligence, and the Mexican Academy of Computing. She got 3 awards (2 Gold winners and 1 silver winner) for her participation in the Project ”Open Innovation Laboratory for Rapid Realization for Sensing, Smart, and Sustainable Products”. QS Stars Reimagine Education. She obtained seven first-place awards for Ed- ucational
(Transportation) and Masters of City & Regional Planning. She completed a B.S. Management Studies, at the University of the West Indies (Mona), Jamaica.Dr. Kofi Nyarko, Morgan State University Dr. Kofi Nyarko is a Tenured Associate Professor in the Department of Electrical and Computer Engi- neering at Morgan State University. He also serves as Director of the Engineering Visualization Research Laboratory (EVRL). Under his direction, EVRL has acquired and conducted research, in excess of $12M, funded from the Department of Defense, Department of Energy, Army Research Laboratory, NASA and Department of Homeland Security along with other funding from Purdue University’s Visual Analytics for Command, Control, and
Paper ID #40400Engineering Application of Artificial IntelligenceProf. Shahab D. Mohaghegh, West Virginia University Shahab D. Mohaghegh, a pioneer in the application of Artificial Intelligence and Machine Learning in the Exploration and Production industry, is a Professor of Petroleum and Natural Gas Engineering at West Virginia University and the president and CEO of Intelligent Solutions, Inc. (ISI). He is the direc- tor of WVU-LEADS (Laboratory for Engineering Application of Data Science). Including more than 30 years of research and development in the petroleum engineering application of Artificial Intelligence and
the LTU Thermo-Fluids and Aerodynamics Laboratories, coordinator of the Certificate/Minor in Aeronautical Engineering, and faculty advisor of the LTU SAE Aero Design Team. Dr. Gerhart con- ducts workshops on active, collaborative, and problem-based learning, entrepreneurial mindset education, creative problem solving, and innovation. He is an author of a fluid mechanics textbook. ©American Society for Engineering Education, 2023 A Mind Map for Active Learning TechniquesAbstractThis evidence-based practice paper describes the creation of and use of a mind map of popularactive learning techniques. When faculty members are learning about the implementation ofactive learning for the
the mechanical engineering capstone projects, introducing non-profit partnerships related to designs for persons with disabilities, and founding the Social/Environmental Design Impact Award. He manages several outreach and diversity efforts including the large-scale Get Out And Learn (GOAL) engineering kit program that reaches thousands of local K-12 students.Dr. Elisabeth Smela, University of Maryland College Park Received a BS in physics from MIT and a PhD in electrical engineering from the University of Penn- sylvania. Worked at Link¨oping University in Sweden and then Risø National Laboratory in Denmark as a research scientist before joining Santa Fe Science and Technology as the Vice President for Research
taught in thissequence is basic programming.The programming instruction presented in ENGR 111 is an extension of the programming skillslearned in ENGR 110. However, ENGR 110 teaches programming basics in Python, whereas theENGR 111 instruction utilizes Arduino microcontrollers for its programming curriculum. Theprogramming instruction in ENGR 111 also forgoes standalone programming assignments forscaffolded modules that prepare students for an end-of-semester Cornerstone Project.Accordingly, students gain exposure to varying programming languages, and a wide introductionto software design concepts that help prepare them for the remainder of their academic andprofessional careers.In this paper, two semesters of ENGR 111 with two different
the past worked as an assis- tant researcher in the group of educational Technologies at Eafit University in Medellin, Colombia. His research area is the online Laboratories ©American Society for Engineering Education, 2023 Learning Outcomes as a Self-evaluation Process Catalina Aranzazu-Suescun, Ph.D.1 and Luis Felipe Zapata-Rivera, Ph.D.2 1 Assistant Professor, Department of Cyber Intelligence and Security 2 Assistant Professor, Department of Computer, Electrical and Software Engineering Embry-Riddle Aeronautical University, Prescott CampusAbstractLearning outcomes are measurable statements that can be used to
Polytech- nic State University, San Luis Obispo. He received his Ph.D. in 1994 from Stanford University and has served as a Fulbright Scholar at Kathmandu UniversityDr. Brian P. Self, California Polytechnic State University, San Luis Obispo Brian Self obtained his B.S. and M.S. degrees in Engineering Mechanics from Virginia Tech, and his Ph.D. in Bioengineering from the University of Utah. He worked in the Air Force Research Laboratories before teaching at the U.S. Air Force Academy for sev ©American Society for Engineering Education, 2023 [Work in Progress] Intelligence is Overrated: The Influence of Noncognitive and Affective Factors on Student PerformanceAbstractWhen
Paper ID #37950Peanut Trials on Raised Beds with Indoor and Outdoor FarmBot SetupsDr. Abhijit Nagchaudhuri, University of Maryland, Eastern Shore Dr. Abhijit Nagchaudhuri is currently a Professor in the Department of Engineering and Aviation Sci- ences at University of Maryland Eastern Shore. He is a member American Society for Mechanical En- gineers (ASME) and American Society for Engineering Education. He is actively involved in teaching and research in the areas of robotics/mechatronics, precision agriculture and remote sensing, and biofu- els/renewable energy.Dr. Madhumi Mitra, Ph.D., University of Maryland, Eastern
Paper ID #39036Impact of Extra Credit for Practice Questions on Programming Students’Participation and PerformanceDr. Sarah Rajkumari Jayasekaran, University of Florida Sarah Jayasekaran (Dr J) is an instructional assistant professor at the University of Florida. She has a Master’s in Structural Engineering and a Ph.D. in Civil Engineering from the University of Florida (UF). She is originally from the city of Chennai, India. Dr. J came to the United States to pursue her passion for teaching. Her research interest includes smart cities, smart concepts in education, student retention, and curriculum development.Umer
STEMresearch experiences in defense relevant research areas and to teach the participants about careeropportunities in the Naval civilian research enterprise, as well as other research career pathswithin the defense industry. In addition to gaining hands-on research experience and mentoring,the students received training from each university's Office of Undergraduate Research in topicsrelated to the nature of research, the ethics of researchers, and the mechanics of writing andpublishing research.Initially the program also included travel for both the student veterans and their faculty mentorsto the Naval Research Laboratory in Washington D.C., to meet their NRL mentors in person, andto present on their summer research. COVID-19 prevented these trips
Fall 211 5 2023 Spring 156 5Course Goals and StructureThe course goals are for students to learn: (1) to analyze data in the context of engineeringproblems, (2) programming using MATLAB, (3) to work effectively in teams, (4) to prototypeusing hand tools, basic CAD, and 3D printing, and (5) to articulate differences and overlapsbetween engineering disciplines and practices. These course goals are stated on the syllabus.Students in ENGR 130 meet in two 75-minute laboratory sessions and a single, combined 75-minute lecture per week. In the lab, students complete two-week modules that combineMATLAB programming and hands-on design projects, working in teams of three or
Paper ID #38196Work in Progress: Gap Analysis for Assessment of Entrepreneurial Mindsetin EngineeringDr. Heather Dillon, University of Washington Dr. Heather Dillon is Professor and Chair of Mechanical Engineering at the University of Washington Tacoma. Her research team is working on energy efficiency, renewable energy, fundamental heat transfer, and engineering education. Before joining academia, she worked for the Pacific Northwest National Laboratory (PNNL) as a senior research engineer working on both energy efficiency and renewable energy systems, where she received the US Department of Energy Office of Science
.[16]. Nicholas A Baine P.E., Karl Brakora, and Christopher P. Pung P.E. "Evaluating ABET Student Outcome (5) in a Multidisciplinary Capstone Project Sequence," in 2020 ASEE Virtual Annual Conference Content Access, Virtual Online, June 22-26, 2020.[17]. Gerad Voland, Engineering by Design. Second edition, Pearson Prentice Hall, 2004[18]. Kim, E. M., & Schubert, T. F., & Jacobitz, F. G., ”Student Peer Teaching in Engineering Laboratory Situations,” in 2014 ASEE Annual Conference & Exposition, Indianapolis, Indiana, June 15-18, 2014.[19]. Bailey, J., “Exploring an Inquiry-based Learning with Peer-teaching Pedagogy in a Physiological Signals Lab Course,” in 2018 ASEE Annual Conference & Exposition, Salt