instruction.” Science and Engineering Ethics. https://doi.org/10.1007/s11948-020-00261-x.[30] D.T. Ozar. 2001. “Learning outcomes for ethics across the curriculum programs.” Teaching Ethics. 2(1), 1-27. https://doi.org/10.5840/tej2001211[31] C. Mitcham and E.E. Englehardt. 2019. “Ethics across the curriculum: Prospects for broader (and deeper) teaching and learning in research and engineering ethics.” Sci Eng Ethics, 25: 1735-1762. DOI 10.1007/s11948-016-9797-7[32] R. Walton, J.S. Colton, R. Wheatley-Boxx, K. Gurko. 2016. “Social justice across the curriculum: research-based course design.” Programmatic Perspectives, 8(2), 119-141.[33] D.W. Parent and P. Backer. 2018. “Integration of an electrical engineering capstone course with
education, her research interests include engineering education, particularly as related to systems thinking, organizational cultures, professional identity devel- opment, and supporting the success and ideas of underrepresented students within engineering.Mrs. Javiera Espinoza von Bischhoffshausen, University of Michigan Javiera Espinoza von Bischhoffshausen is a Master’s student in the Center for the Study of Higher and Postsecondary Education at the University of Michigan. She has a B.S. in Industrial Engineering from the Pontifical Catholic University of Valparaiso (PUCV), Chile (2012). Before pursuing her M.A. in Higher Education, Javiera had an appointment at the College of Engineering at PUCV in the engineering
success.References[1] J.S. Lamancusa, J.E. Jorgesen, and J.L. Zayas-Castro, “The Learning Factory – A New Approach to Integrating Design and Manufacturing into the Engineering Curriculum,” Journal of Engineering Education, vol. 86, no. 2, January, 2013[2] K. Yelamarthi, J. Slater, J. Wu, and P.R. Mawasha, “Engineering Management in an Interdisciplinary Senior Design Project,” Balkan Region Conf. on Engineering and Business Education. vol. 1, no. 1, pp. 153–156, August 2014[3] Z. Siddique, “Structuring Senior Design Capstone to Develop Competencies,” ASME Proceedings of 9th International Conference on Design Education, vol. 7, August, 2012
, that was that was beyond acceptable…” • XXX “Once I was in a high-level pitch meeting (the only woman in the room), and asked if I could present early, stating I had to leave at 5:45 pm in order to pick up my son from daycare. They did not accommodate me, and I quietly left the room at 5:45. The next day I was chastised for leaving. It was bad enough my kids spent long hours with strangers, so this event triggered me to evaluate my work-life balance. I resigned a few weeks later…”As mentioned previously 17 of the 22 had children and 14 of 17 mothers discussedstruggles integrating work and family.The entire quotes are:BBB “I got a bad review my first year, (as an engineering
students within COSE, which supplied the funding for this study.BackgroundTheoretical FrameworkThe framework of Astin’s, Swail’s, and Tinto’s models are, in their simplest interpretation, aboutstudent involvement in their chosen college and program. Astin’s involvement model shows thatthe academic performance of a student is directly correlated to their involvement level within theircollege or program [2, 3]. Tinto theorizes that poor integration into the many facets of college life,including academically and socially, is an early indication of a student having a higher risk ofdropping out [4-6]. Finally, Swail et al.’s analysis of minority retention in institutions of higherlearning yields the Geometric Model of Student Persistence and
. Her research interests include the integration of fine arts and engineering and developing effective methods to teach transport phenomena.Ms. Danielle Gan, University of Connecticut Danielle Gan (she/her) is a senior undergraduate in the Department of Chemical & Biomolecular Engi- neering at the University of Connecticut with a minor in Global Environmental Change. She is currently assisting Dr. Kristina Wagstrom with research on the design and testing of an unmanned aerial vehicle that can monitor particulate matter. Danielle is a member of Citizens Climate Lobby, a grassroots envi- ronmental group that aims to influence climate policy. She is also a member of the Society of Women Engineers (SWE), as well
, in 2005 and 2011, respectively. In 2013, he served as an Adjunct Professor with the American University of Kuwait and the Gulf University of Science and Technology. He is currently a lecturer at with Purdue University. His research has been concerned with power and energy systems, electromechanical energy conversion devices, modeling and simulation and engineering education.Mr. Srinivas Mohan Dustker, Purdue University at West Lafayette (COE) Srinivas Dustker is a Ph.D. student in Engineering Education at Purdue University. His research interests include community engaged learning, integration of service-learning in engineering curriculum, faculty development, curriculum development, education policy and
ortechnical problems [9]. Lifelong learning skills like “ability & eagerness to learn” and “selfawareness” align with the need to work through the complex sociotechnical challenges thatengineers face today [10], and support students in navigating an evolving labour system [11].Furthermore, the development of future skills through work integrated learning experiences hasbeen documented in other research [12]-[15].2.2 Identity Trajectory TheoryIdentity theory has a strong presence in the scholarship on the education and development ofengineering students, as practitioners attempt to understand the interplay between curricular,co-curricular and work experiences, and the development of students “as engineers” [16]-[18].While Identity Trajectory
Engineering Ethics, 19(4), 1455–1468.Bagdasarov, Z., Thiel, C. E., Johnson, J. F., Connelly, S., Harkrider, L. N., Devenport, L. D., & Mumford, M. (2013). (2013). Case-based Ethics Instruction: The Influence of Contextual and Individual Factors in Case Content on Ethical Decision-Making. Science and Engineering Ethics, 19(3), 1305–1322.Chung, C. A., & Alfred, M. (2009). Design, development, and evaluation of an interactive simulator for engineering ethics education (SEEE). Science and Engineering Ethics, 15(2), 189–199.Haws, D. R. (2002). Using the web to integrate ethics in the engineering curriculum. Proceedings of the 32nd ASEE/IEEE Frontiers in Education Conference, S4F:7-12.Herkert, J. (2000). Engineering
engineering careers and curriculum is well-known. ABET lists“an ability to function effectively on a team whose members together provide leadership, create acollaborative and inclusive environment, establish goals, plan tasks, and meet objectives” as astudent outcome in its outcomes-based assessment of engineering curricula [1]. Early careerengineers often describe effective teamwork and interpersonal skills as the most importantcompetencies in their jobs [2, 3]. The formation of teams can significantly affect how well a teamworks together, and team formation and function have been studied in engineering curriculum fordecades [4–6]. Previous research has shown that teams are more effective when instructors createthe teams considering students
economic structures. “Anti-toxics activists, through the process of local fights against polluting facilities, came to understand discrete toxic assaults as part of an economic structure in which, as part of the ‘natural’ functioning of the economy, certain communities would be polluted.” (Cole and Foster, 2000 p. 23).In the 1980s, civil rights leaders worked with the anti-toxics movement to conduct economicanalyses through their understanding of structures. In turn, anti-toxics leaders brought in the civilrights activists’ racial critiques (Cole and Foster, 2000). Together, these integrations ofknowledge and methods grew the environmental justice movement.Traditional Environmental MovementThe initiatives and efforts of
Paper ID #19478A Workshop for Integration of Internet of Things into Green Energy Manu-facturingDr. Richard Chiou, Drexel University (Eng. & Eng. Tech.) Dr. Richard Chiou is Associate Professor within the Engineering Technology Department at Drexel Uni- versity, Philadelphia, USA. He received his Ph.D. degree in the G.W. Woodruff School of Mechanical Engineering at Georgia Institute of Technology. His educational background is in manufacturing with an emphasis on mechatronics. In addition to his many years of industrial experience, he has taught many different engineering and technology courses at undergraduate and
background drove the identification of an infraredand software systems development process. During (IR) proximity sensor (i.e., λ = 870 ±70 nm).the early stage of the project, students defined Electrical engineering knowledge is utilized torequirements to accurately indicate the vehicle’s design and implement a system using the Raspberrylocation relative to any in path obstacles, whether Pi 2B single board computer, the I/O ports and itsstatic or dynamic and their position relative to integrate functional capability within two remote-fabricated road, lane markers, and edge boundaries. controlled (RC) vehicles. Upon incorporating designStudents pressed forward to present and validate
learning in an NLP course?B. Which tools and techniques most effectively demonstrate NLP’s interdisciplinary applications,particu-larly in tasks like sentiment analysis in underrepresented languages?C. How can ethical issues, including AI bias, be integrated into the curriculum to promote sociallyrespon-sible understanding?[5]. Framework for NLP Education Theoretical Instruction Interdisciplinary Case Studies Interactive Tools Real-Time Feedback System Jupyter Notebooks Python Libraries (e.g., NLTK, SpaCy) Personalized Feedback Applications in
MechanicalEngineering, and the Center for Teaching and Learning for supporting the development and initialassessment of this class. H.S.S. thanks Professor Karen Nakamura (UC Berkeley), ProfessorGrace O’Connell (UC Berkeley), and Lecturer David L. Jaffe (Stanford University) for theirinsights, conversations, and guest lectures.References[1] Keith Ballard. Researching disability and inclusive education: participation, construction and interpretation. International journal of inclusive education, 1(3):243–256, 1997.[2] McPherson H Newell, M´onica C Resto-Fern´andez, and Michael F MacCarthy. Integrating disability studies into an engineering service-learning curriculum. 2021.[3] Anon Ymous, Katta Spiel, Os Keyes, Rua M Williams, Judith Good, Eva Hornecker
] M. Habibi and E. Diep, "Developing an integrated motion capture and video recording," in Preceedings: American Society for Engineering Education, Atlanta, GA, 2013.[8] S. Freeman, S. L. Eddy, M. McDonough, M. K. Smith, N. Okoroafor, H. Jordt and M. P. Wenderoth, "Active learning increases student performance in science, engineering, and mathematics," PNAS, vol. 111, no. 23, 2013.[9] R. R. Hake, "Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses," American Journal of Physics, vol. 66, no. 64, 1998.[10] L. Deslauriers, L. S. McCarty, K. Miller, K. Callaghan and G. Kestin, "Measuring actual learning versus feeling of learning in
Research Experience for Teachers Site in Mechatronics and Entrepreneurship, a DR K-12 research project, and an ITEST re- search project, all funded by NSF. He has held visiting positions with the Air Force Research Laboratories in Dayton, OH. His research interests include K-12 STEM education, mechatronics, robotics, and con- trol system technology. Under a Research Experience for Teachers Site, a DR K-12 project, and GK-12 Fellows programs, funded by NSF, and the Central Brooklyn STEM Initiative (CBSI), funded by six phil- anthropic foundations, he has conducted significant K-12 education, training, mentoring, and outreach activities to integrate engineering concepts in science classrooms and labs of dozens of New York
Management and Engineering Management programs. His courses at these institutions have included Lean Construction, Total Quality Management, Quality Control Systems, and Construction Productivity Improvement. As a Principal Consultant with Harding Associates Inc., of Miami, Dr. Forbes provides lean and quality improvement solutions for the construction, service, and manufacturing industries. His book ”Modern Construction: Lean Project Delivery and Integrated Practices” (Forbes and Ahmed, 2010, CRC Press), is an internationally recognized reference. He has published and presented many papers internationally on the application of lean techniques and quality initiatives in the construction environment. In previous
Ft. Campbell, the120-credit program totals $35,430. The flight lab fees add $96,619.50 to that tuition (seeAppendix B). The approximate cost of a nearby fixed-wing program with a similar curriculum is$ 60,000. [11]Aircraft: The next decision was what aircraft to obtain for the training. The predominant helicopterused for initial helicopter training in the U.S. is the Robinson R22. Its unmatched low initialacquisition cost makes it a natural choice for flight schools. It was determined, through initialresearch that the operating characteristics of the R22, were marginal, at best, for initial pilot training.The R22 suffers from an extremely low inertia main rotor system. This characteristic leaves theR22 main rotor susceptible to over
University (USA) and was 2014-15 Fulbright Scholar in Engineering Education at Dublin Institute of Technology (Ireland).Dr. Cheryl A. Bodnar, Rowan University Cheryl A. Bodnar, Ph.D., CTDP is an Assistant Professor in the Department of Experiential Engineering Education at Rowan University. Dr. Bodnar’s research interests relate to the incorporation of active learn- ing techniques in undergraduate classes as well as integration of innovation and entrepreneurship into the engineering curriculum. In particular, she is interested in the impact that these tools can have on student perception of the classroom environment, motivation and learning outcomes. She obtained her certifica- tion as a Training and Development
,like the New Jersey Project. This 1986 conference developed an inclusive curriculum that beganas distinct women’s studies and evolved into curricular integration of race, ethnicity, class andgender, introducing both content and methods. By 1996, the project grew to involve more than100 faculty members in two- and four-year higher education institutions; it was followed by theCurriculum Mainstreaming Teaching Initiative that involved faculty from New Jersey, Maryland,Massachusetts, New York, Illinois, California and Tennessee.History textbooks in British Columbia tended to add content about women’s issue in sidebarsand asides from the main text. This “filler feminism” trivialized the contributions of women anddepicted a subservient, lessor role
Paper ID #16543On the Use of Outcomes to Connect Students to an Engineering Identity, Cul-ture, and CommunityProf. Rebecca A. Bates, Minnesota State University, Mankato Rebecca A. Bates received the Ph.D. degree in electrical engineering from the University of Washington in 2004. She also received the M.T.S. degree from Harvard Divinity School in 1993. She is currently a Professor in the Department of Integrated Engineering program at Minnesota State University, Mankato, home of the Iron Range and Twin Cities Engineering programs. She is also a program director at the National Science Foundation for TCUP and HBCU-UP in
paper describes an effort to replicate best practices at Sam Houston State University in theimplementation of a cross-disciplinary course designed to provide students from diversedemographics with a more effective ramp into undergraduate research. The specific aim of thecourse was to provide students from diverse backgrounds with a curriculum designed to buildcommunity, introduce students to research faculty, and to counteract a perceived lack of researchreadiness. The student learning goals for the course included providing opportunities for studentsto: study key historical examples of excellent research; interact with faculty researchers whoperform projects across the STEM disciplines; and to explore the similarities and differencesbetween
whilestudents completed an engineering design challenge and attempted to apply epistemic frames toassess student ways of being an engineer.Creation of Engineering Epistemic Frame for K-12 Engineering (EEFK12) The engineering epistemic frame for K-12 (EEFK12) was created by synthesizing localframeworks[9], higher education goals, policy directives[33, 34], and relevant literature. Thedevelopment of the frame occurred using a similar process used by Chesler and colleagues [32]in the development of an online professional practice simulator for freshman undergraduates andArastoopour and colleagues’ virtual internship[29] where they used ABET Criterion 3 as afoundation. Local standards from Massachusetts were used because the curriculum for thesummer
topersist in STEM for these STEM students[12].STEM identity is a reflection of how one understands and positions oneself within theSTEM culture and is often defined as the composition of self-views that emerge fromsocialization and culturalization. Settings (communities) have the power to influence,create expectations, and influence decisions regarding STEM persistence.Culturally Relevant Pedagogy and Persistence in STEM DisciplinesCulturally Relevant Pedagogy (CRP) is an approach to teaching that recognizes andvalues the cultural experiences and identities of students and incorporates theseexperiences into the curriculum and teaching practices [17]. This approach has beenshown to be particularly effective in increasing the retention of
website can serve as a simplemethod to facilitate an accessible and inclusive learning environment for students.KeywordsTeaching/Learning Strategies, Accessibility, Inclusivity, Distributed Learning Environments,Online learning, Course design1. Introduction1.1 BackgroundThe use of Virtual Learning Environments (VLEs) have enabled us to organize learningresources and disseminate information to students with positive impacts in their motivation tolearn [1], [2]. Importantly, analytics from VLEs such as clickstream data can be used topredict at-risk students [3], [4] as well as academic performance of students [5], [6]. VLEsare primarily used as a repository for teaching materials but recently, integration withapplications such as Turnitin, VLEs
curriculum for our Engineering programs. Here is aflowchart of the sequence of courses explaining relations of these courses with other coreEngineering courses (Figure 1): Figure 1: Flowchart of courses with the newly designed Physics and Engineering Math courses (highlighted in yellow) along with their relations with some core Engineering courses. The arrows show the prerequisite structure.In the first semester, a declared Engineering major is advised to register for Introductory Mathfor Engineering Applications I (ENGR 121L) and Physics for Engineers I (ENGR 215) coursesalong with other Freshman Engineering and General Education courses. ENGR 121L is offeredas an eight-week course during the first half
EACCriterion 5, stipulating expanded incorporation of DEI (diversity, equity, and inclusion) intocurricula. While these topics have begun to enter the broader civil and environmentalengineering curriculum and have made monumental gains in coverage [1], they have less oftenbeen integrated into structural engineering. The current undergraduate structural engineeringcurriculum at our institution lacks the incorporation and facilitation of the necessary skills tosupport the entrepreneurial mindset development needed for multi-faceted disaster riskmanagement. As many structural engineers begin their practice after undergraduate education, itis critical to begin to integrate and build these skills before they enter practice [2], [3]. Therefore,we develop an
of internationalization inhigher education given by Dr. Jane Knight, who described it as a process of integrating aninternational dimension into teaching, research and service.5, 6, 7There have also been many professors from U.S. universities who have gone overseas to helpmake improvements to global higher education, who play important roles in global highereducation, and who provide services for changes to be implemented into the education systemsof other countries. This also serves as an opportunity for the U.S. professors to be able to learnabout other educational systems worldwide and then identify best practices that they canincorporate into their own educational system.8There are also many cultural benefits that can beobtained by the
/03043797.2023.2171852.[5] J. L. Plass, B. D. Hommer, and C. K. Kinzer, "Foundations of game-based learning," Educational Psychologist, vol. 50, no. 4, pp. 258-283, Feb 2015, doi: 10.1080/00461520.2015.1122533.[6] S. Domagk, R. N. Schwartz, and J. L. Plass, “Interactivity in multimedia learning: An integrated model,” Computers in Human Behavior, vol. 26, no. 5, pp. 1024–1033, Sep. 2010, doi: 10.1016/j.chb.2010.03.003.[7] E. Andersen, “Optimizing adaptivity in educational games,” in Proceedings of the International Conference on the Foundations of Digital Games, Raleigh North Carolina: ACM, May 2012, pp. 279–281. doi: 10.1145/2282338.2282398.[8] D. Leutner, “Guided discovery learning with computer-based simulation games: Effects of