Professional Engineer of Ontario. He taught at the University of Western Ontario and is currently Assistant Professor at McMaster University, Department of Electrical and Computer Engineering.Art Pallone, Murray State University Art Pallone holds a Ph.D in Applied Physics from the Colorado School of Mines (2000) in Golden, CO USA. He also holds an M.S. in Applied Physics from Indiana University of Pennsylvania (1995) and a B.S. in Aerospace Engineering from the University of Michigan (1991). From 2000 to 2003, he held a Davies Fellows Postdoctoral Teaching and Research appointment cosponsored by the United States Military Academy and the U.S. Army Research Laboratory. He is now an Assistant
AC 2008-989: ENGINEERING PROJECT LABORATORY MODULES FOR ANINTRODUCTION TO MATERIALS COURSEStacy Gleixner, San Jose State University STACY GLEIXNER is an Associate Professor in the Chemical and Materials Engineering Department at San Jose State University. She teaches courses on introductory materials engineering, electronic materials, solid state kinetics, and microelectronic processing. Prof. Gleixner has an active research program in solar cells and micro-electro mechanical systems (MEMS). She can be reached at gleixner@email.sjsu.edu.Elliot Douglas, University of Florida ELLIOT DOUGLAS is an Associate Professor in the Department of Materials Science and Engineering at the
AC 2008-2567: A MULTIDISCIPLINARY LABORATORY COURSE: ROBOTICDESIGN AND PROGRAMMING WITH MINDSTORMSNebojsa Jaksic, Colorado State University-Pueblo Nebojsa I. Jaksic received the Dipl. Ing. degree in electrical engineering from Belgrade University in 1984, the M.S. in electrical engineering, M.S. in industrial engineering, and Ph.D. in industrial engineering from the Ohio State University in 1988, 1992, and 2000, respectively. From 1992 to 2000 he was with DeVry University in Columbus, OH. In 2000, he joined Colorado State University-Pueblo, where he is currently an Associate Professor and the mechatronics program director. Dr. Jaksic's interests include mechatronics and nanotechnology
-edits the Australasian Journal of Engineering Education. Dr Lindsay was the recipient of a 2007 Carrick Award for Australian University Teaching. In 2005 he was named as one of the 30 Most Inspirational Young Engineers in Australia. Page 13.895.1© American Society for Engineering Education, 2008 Milestone – Based Assessment: An Alternative Strategy for Assessing Laboratory Learning OutcomesAbstractEngineering programs often feature units that contain a semester-long laboratory project, inwhich students complete an extended piece of work throughout the full duration of thesemester. The
CAD/CAM and Robotics Applications in Laboratory-Learning Environment R. Radharamanan and Ha Van Vo School of Engineering, Mercer University, Macon, GA 31207-0001, USAAbstractIn this paper, how the design/automation hardware and software and manufacturing laboratory facilitiesare effectively integrated to teach Computer Aided Design (CAD), Computer Aided Manufacturing(CAM), CAD/CAM integration, and robotics with appropriate hands-on experiences in the Biomedical,Mechanical, and Industrial Engineering Programs are presented and discussed. A typical CAD moduledeveloped and taught in Biomedical Engineering includes the use of patient-specific 2D
CAD/CAM and Robotics Applications in Laboratory-Learning Environment R. Radharamanan and Ha Van Vo School of Engineering, Mercer University, Macon, GA 31207-0001, USAAbstractIn this paper, how the design/automation hardware and software and manufacturing laboratory facilitiesare effectively integrated to teach Computer Aided Design (CAD), Computer Aided Manufacturing(CAM), CAD/CAM integration, and robotics with appropriate hands-on experiences in the Biomedical,Mechanical, and Industrial Engineering Programs are presented and discussed. A typical CAD moduledeveloped and taught in Biomedical Engineering includes the use of patient-specific 2D
CAD/CAM and Robotics Applications in Laboratory-Learning Environment R. Radharamanan and Ha Van Vo School of Engineering, Mercer University, Macon, GA 31207-0001, USAAbstractIn this paper, how the design/automation hardware and software and manufacturing laboratory facilitiesare effectively integrated to teach Computer Aided Design (CAD), Computer Aided Manufacturing(CAM), CAD/CAM integration, and robotics with appropriate hands-on experiences in the Biomedical,Mechanical, and Industrial Engineering Programs are presented and discussed. A typical CAD moduledeveloped and taught in Biomedical Engineering includes the use of patient-specific 2D
senior design project, aneducational device was created to teach students in developed and developing nations about theenvironmental impacts of water contamination and to promote sustainable water utilization. Toaccomplish this goal an interactive, educational, cost-effective water purification system, knownas the Adaptive Water Treatment for Education and Research Laboratory (Adaptive WaTERLab), was developed. The design includes six different purification methods contained inindividual housings that can be connected and reordered to create multiple purification solutions.The purification methods selected for this project include: sediment filtration, carbon filtration,chemical disinfection, reverse osmosis, forward osmosis, and ultraviolet
some researchers11,22,6 question the value of lab experiments,there is no doubt that the lab experiment is a commonly employed teaching tool in industrialtechnology. The purpose of laboratory experiments in industrial technology is, as Gillet,Latchman, Salzmann, and Crisalle10 said, “…to motivate, illustrate, and enlighten thepresentation of the subject matter addressed in the lecture” (p. 190).A written report often follows the lab experiment in order to cause the student to reflect on,summarize, and quantify the laboratory experience. To learn by doing in the laboratory,followed by reflecting on that experience and writing about it in the form of a report, can onlyfurther enhance learning. Lederman16 stated that “the assumption that students
13.88.1© American Society for Engineering Education, 2008 A Program for Distributed Laboratories in the ECE CurriculumAbstractThis paper describes a project that seeks to improve undergraduate learning by developing acohesive program where experiments are introduced into a wide selection of ECE courses thatcurrently do not have labs. Most of the experiments are low cost and portable, which facilitates adecentralized laboratory environment where students perform the experiments at their homes orin the classroom rather than in dedicated laboratories. We will assess our work through theinvolvement of twelve faculty members teaching ten courses, some of which are offered indistance learning settings.1. IntroductionExperiments are vital to the
simplified somewhat from the initialimplementation. In some cases, fewer data points were recorded to determine a trend. In others,the scope of the experimental procedure was reduced. The laboratory measurements in our inquiry-based laboratory exercises are designed toexpose student misconceptions. The students are asked to make a prediction that exposes theirthinking. This is followed with a direct measurement that confirms a correct model or shows theerror of an incorrect model. Finally, our inquiry-based experiments are designed to teach students to apply qualitative aswell as quantitative reasoning. During the laboratory exercises, and on the pre and post-labquizzes, students are asked to predict trends in the measured data before that
. Page 13.806.1© American Society for Engineering Education, 2008 Introducing Universal Design Concepts in an Interdisciplinary Laboratory ProjectAbstractDesign for individuals with disabilities has been used by many institutions as a way to teach thedesign process to undergraduate students. These design projects often involve the design of anassistive device for a single individual to facilitate a particular task. The departments ofbiomedical engineering and industrial engineering at Western New England College have furtherdeveloped an interdisciplinary laboratory design experience that involves the design of assistivetechnologies for workers performing light manufacturing work at Goodwill Industries of
AC 2008-1947: DEVELOPMENT OF AN ONLINE LABORATORY FORCOMPUTER-INTEGRATED MANUFACTURING COURSESYuqiu You, Morehead State University Dr. Yuqiu You has academic background from both automation engineering and industrial technology. For six years, she taught many courses in the area of manufacturing and automation. She has experience in developing new manufacturing courses and establishing online process control station for virtual laboratory. Presently, she is teaching NC-CNC machining technology, Computer Integrated Manufacturing, and Robotic Interface Engineering, Robotic Applications, and Fundamentals of Computer Technology.Xiaolong Li, Morehead State University Dr. Xiaolong Li has an
AC 2008-2384: A DIRECT METHOD FOR TEACHING AND ASSESSINGPROFESSIONAL SKILLS IN ENGINEERING PROGRAMSAshley Ater Kranov, Center for Teaching, Learning & Technology Dr. Ashley Ater Kranov is Assistant Director of the Center for Teaching, Learning & Technology at Washington State University. She specializes in program assessment and has extensive experience in the assessment of engineering education. She has co-authored a number of journal articles and conference proceedings on engineering education, including Integrating Problem-Solving Skills Across an Engineering Curriculum: A Web Resource, 32nd ASEE/IEEE Frontiers in Education Conference Proceedings, 2002.Carl Hauser, Washington State
AC 2008-1675: STATISTICAL PROCESS CONTROL LABORATORY EXERCISESFOR ALL ENGINEERING DISCIPLINESJeremy VanAntwerp, Calvin CollegeRichard Braatz, University of Illinois at Urbana-Champaign Page 13.1096.1© American Society for Engineering Education, 2008 Statistical Process Control Laboratory Exercises for all Engineering DisciplinesAbstr actDespite its importance in industry, statistical process control (SPC) is rarely taught inundergraduate controls courses. However, one or two lectures, coupled with the hands-on assignment in this paper, are sufficient to give a good introduction to the topic. Thispaper presents a case for why all engineers
AC 2008-83: DEVELOPMENT OF AN INTERDISCIPLINARY LABORATORYCURRICULUM FOR EMERGING PRODUCT MANUFACTURINGFrank Liou, Missouri University of Science & Technology Frank Liou is a Professor in the Mechanical Engineering Department at the Missouri University of Science and Technology (MST). He currently serves as the Director of the Interdisciplinary Manufacturing Engineering Program at MST. His teaching and research interests include CAD/CAM, rapid prototyping, and rapid manufacturing. He has published over 150 technical papers, and has research grants and contracts over $8M. Page 13.422.1© American
AC 2008-1705: ENHANCING THE SOFTWARE VERIFICATION ANDVALIDATION COURSE THROUGH LABORATORY SESSIONSSushil Acharya, Robert Morris University Sushil Acharya, D.Eng. Assistant Professor of Software Engineering Acharya joined RMU in Spring 2005 after serving 15 years in the Software Industry. With US Airways Acharya was responsible for creating a Data Warehouse and using advance Data Mining Tools for performance improvement. With i2 Technologies he led the work on i2’s Data Mining product “Knowledge Discover Framework” and at CEERD (Thailand) he was the product manager of three energy software products (MEDEE-S/ENV, EFOM/ENV and DBA-VOID) which are currently in use in 26 Asian and 7
AC 2008-749: BIOTECHNOLOGY AND BIOPROCESSING ANDMICROBIOLOGY LABORATORY COURSES: A MODEL FOR SHARED USE OFINSTRUCTIONAL LABORATORIES BETWEEN ENGINEERING AND SCIENCESusan Sharfstein, Rensselaer Polytechnic Institute Susan Sharfstein is an Assistant Professor in the Departments of Chemical and Biological Engineering and Biology at Rensselaer Polytechnic Institute. Her research interests are in mammalian cell culture for bioprocessing. Her teaching interests are in biotechnology and biochemical engineering and in integrating engineering and life science education. Professor Sharfstein received her Ph.D. in Chemical Engineering from UC Berkeley. She is the recipient of an NSF CAREER award whose
manufacturing, software development and applications; as well as remote and virtual laboratories. Page 13.817.1© American Society for Engineering Education, 2008 IT-Enhanced Teaching and Learning in Machine DynamicsAbstractChallenging problems of modern engineering education, teaching and learning methods are stillmostly based on traditional lectures and exercises, which fall short in their efforts to develop theengineering skills levels of today’s engineers. Information Technology (IT) can play a significantrole in the development learning environments and lead students through the processes ofstructuring of information into
functions to enhance research capabilities and forinstructional delivery on basic nanofabrication technology. Currently, cross-teaching is inexistence among faculty members from Departments of Technology and Physics with theutilization of some of these facilities and laboratories to enhance nanofabrication hands-onexperience. Some of the major laboratories and facilities are: 1) The Ronald Mason Jr. Nanotechnology Modeling Center (RMNMC) 2) Nanoscience Core Laboratory 3) Molecular Magnetic Resonance Core Laboratory 4) The Computational Modeling Core Laboratory/Supercomputer Center 5) The Visualization Core Laboratory 6) GIS Remote Sensing Laboratory.Utilizing the existing core laboratories and
AC 2008-903: TEACHING APPLIED MEASURING METHODS USING GD&TRamesh Narang, Indiana University-Purdue University-Fort Wayne RAMESH V. NARANG is an Associate Professor of Industrial Engineering Technology program in the Department of Manufacturing & Construction Engineering Technology and Interior Design at Indiana University-Purdue University Fort Wayne, Fort Wayne, IN. He has received both his M.S. and Ph.D. in Industrial Engineering from the University of Iowa, Iowa City, IA. His research and teaching interests include: automated feature recognition, lean manufacturing, metrology, ergonomics, cellular manufacturing, and statistical process control
AC 2008-426: IT TAKES TWO TO TEACH CAPSTONE DESIGNDon Dekker, University of South Florida Don Dekker is currently an Adjunct Professor of Mechanical Engineering at the University of South Florida. He is currently teaching three of his favorite courses Mechanical Engineering Laboratory I, Internal Combustion Engines, and Capstone Design. Before his retirement in 2001, Don taught at Rose-Hulman Institute of Technology. He first joined ASEE in 1974 and some of his ASEE activities include Zone II Chairman (86-88), Chairman of DEED (89-90), and General Chair of FIE ‘87. His degrees are: PhD, Stanford University, 1973; MSME, University of New Mexico, 1963; and BSME, Rose Polytechnic Institute
, 2005.10. Noerenberg, J.W., II Bridging wireless protocols. Communications Magazine, IEEE, 39 (11). 90-97.11. Planet3 Wireless. Introduction - CWNP career certifications, 2006.12. Richards, B. and Stull, B. Teaching wireless networking with limited resources Proceedings of the 35th SIGCSE technical symposium on Computer science education, ACM Press, Norfolk, Virginia, USA, 2004.13. Sarkar, N.I. Teaching computer networking fundamentals using practical laboratory exercises. IEEE Transactions on Education, 49 (2). 285-291.14. Shin, M., Ma, J., Mishra, A. and Arbaugh, W.A. Wireless network security and interworking. Proceedings of IEEE, 94 (2). 455-466.15. Snyder, J. Down and dirty with Wireless LAN security NetworkWorld
on the numerical methodswith little emphasis on using the software and the other is to introduce a CFD software as avirtual reality laboratory in Fluid Mechanics class without emphasis on teaching software. In thefirst type, students need strong mathematical background to succeed in the class and also needfurther training to effectively use modern commercial software for real industrial application.While in the second type, students only learned an abstract form of CFD processes, thus they willnot be able to use CFD commercial software without further training in this area.This paper is about the use of CFD in teaching graduate students at this university who were in atwo year design track program. Many of these students did not have a good
AC 2008-1342: TEACHING REINFORCED CONCRETE DESIGN WITHMATHCAD APPLICATIONNirmal Das, Georgia Southern University Nirmal K. Das is an associate professor of Civil Engineering Technology at Georgia Southern University. He received a Bachelor of Civil Engineering degree from Jadavpur University, India, and M.S. and Ph.D. degrees in Civil Engineering (structures) from Texas Tech University. His areas of interest include structural analysis, structural reliability and wind engineering. Dr. Das is a registered professional engineer in Ohio and Georgia, and is a Fellow of the American Society of Civil Engineers
to student centered learning. The pedagogy has changed but nothinghas been eliminated from the menu of teaching methods. A short list of pedagogical methodsincludes: lecture, collaborative learning, cooperative learning, laboratory reinforcement,technology in teaching and learning, practical applications, student centered exercises, ongoingassessment, and student capstones. The use of any or all of these constitutes an environment that Page 13.838.4touches the learning style of students and the teaching styles of faculty. All cannot be utilized atonce, nor should one be utilized exclusively – thus, it will take some time to learn these and
AC 2008-2528: LAB REPORT WRITING (AND TEACHING!) MADE EASYAlyssa Magleby, University of Utah Alyssa Magleby is a PhD Candidate in electrical engineering at the University of Utah. She completed her B.S. in electrical engineering at Utah State University in 2002. She received the National Science Foundation Graduate Fellowship in 2002. She used her fellowship to continue on and received her M.S. in electrical engineering from the University of Utah in 2004. After programming a modem for a military application in the Advanced Communications group at L-3 Communications Systems-West for a year and a half, she returned to the University of Utah to attain a PhD. She is presently researching
AC 2008-1905: TEACHING RESEARCH SKILLS IN SUMMERUNDERGRADUATE RESEARCH PROGRAMSJacqueline Fairley, Georgia Institute of TehnologyJill Auerbach, Georgia Institute of TechnologyAdrianne Prysock, Georgia Institute of TechnologyLeyla Conrad, Georgia Institute of TechnologyGary May, Georgia Institute of Technology Page 13.1173.1© American Society for Engineering Education, 2008 Teaching Research Skills in Summer Undergraduate Research ProgramsAbstract High-quality research skills are an essential component in successfully navigating thegraduate school process. The focus of this work is to describe a successful approach toteaching research skills to undergraduate
, regularly choose this room for study. They often choose thisfacility over the computer laboratory next door. Learning spaces, like this one, that facilitatealternative pedagogies are greatly needed. The basic configuration and concepts used in this Page 13.280.2design could easily be extended to other facilities. The design could be scaled up to a larger roomwith more clusters.IntroductionA wide range of education literature discusses the importance of inductive, cooperative andactive learning approaches in the classroom. In the review article, “The Future of EngineeringEducation Part 2. Teaching Methods that Work,” Felder, et al. present seven
processor. The goal of this course is to teach the basics of microprocessors andperipheral interfacing techniques. Along with replacing the traditional discrete microprocessorwith a soft-core processor, the course was modified with the addition of the C programminglanguage. The course used assembly language to teach the features and capabilities of the NiosII processor (instructions, registers and memory) and quickly migrate to the C programminglanguage using a task-oriented approach rather than an exhaustive coverage of the language.Both instructors and students gained valuable experience through this process.Course ObjectiveThe ECE 332/332L Microprocessors course at Boise State University covers microprocessorarchitecture, software development