in the Department of Engineering Education and Affiliate Faculty in the Department of Science, Technology & Society and the Center for Human-Computer Interaction at Virginia Tech. Dr. Zhu is also serving as Associate Editor for Science and Engineering Ethics, Associate Editor for Studies in Engineering Education, Editor for International Perspectives at the Online Ethics Center for Engineering and Science, and Executive Committee Member of the International Society for Ethics Across the Curriculum. Dr. Zhu’s research interests include engineering ethics, global and inter- national engineering education, the ethics of human-robot interaction and artificial intelligence, and more recently Asian American students
1.86 2.86 -1.00 3.30 4.00 -0.70 Project management 2.63 3.13 -0.50 2.00 2.43 -0.43 2.00 3.00 -1.00 Ethics in science 2.88 3.13 -0.25 2.14 2.57 -0.43 1.90 2.60 -0.70Students felt they knew more about all items in Table 7 after their participation in the REU(based on all difference scores having a negative value). Reviewing all three cohorts, participantsfelt they learned the most about poster design, rating their knowledge after the REU more thantwo points better than before the REU. Students also felt they learned a lot about preparingresearch presentations, interpreting research findings, presenting research findings, the
ideologicalseparation of technical and social concepts thus reducing inequality in the field? Similarly,McGee and Bentley describe a desire in black and Latinx STEM students to practice equity andjustice within and outside their career and coined this concept as ‘equity ethic’ [12].Interestingly, Swan, Paterson, and Bielefeldt suggest that women and minorities tend to invest inand benefit from involvement in service-learning in engineering due to their potential for socialimpact [13]. Is it possible that student involvement in HEPs could create an equity ethic whichleads to more inclusive practices in their career? Lastly, Reynante details a connection betweenstudent involvement in community engagement, a field closely related to humanitarianengineering, and
] describes white feminism as “an active form of harm, not simply a by-product of self-absorption”; this harmful approach “liberates privileged women while keeping other structures ofinjustice intact” (p. 4). These are the harms we aim to prevent.Someone reading this may think the use of the word harm is an extreme choice in engineering education.After all, we, as engineers, are members of a privileged discipline highly esteemed in society. Ethics is atthe core of what we do because our actions protect and keep people safe. We engage in extensive trainingto prevent deaths in the air, sea, and land. Our disciplinary brand revolves around reliability, precision,and consistency. We are rational. Engineering departments, colleges, and professional
, Think Like an Adversary, and Keep it Simple. The six cybersecurity concepts and topicsabout online safety, cyber ethics, and digital ethics were reinforced in the curriculum activities, as shownin Table 1. 5 Common Sense, https://www.commonsensemedia.org 6 CYBER.ORG, https://cyber.org6 Table I Camp curriculum overview incorporating the GenCyber Concepts and additional related cyber topicsCATEGOR TOPICS EXAMPLE ACTIVITIESYC1: Defense T1: IoT Network Security: What are the varying levels of - Instructor Presentationin Depth security? How are firewalls, antivirus software, VPNs used to - PBS game
assistant at the Tufts’ Center for Engineering Education and Outreach.Dr. Darshan Karwat, Arizona State University I am an assistant professor with a joint appointment in the School for the Future of Innovation in Society and The Polytechnic School at ASU, where I run re-Engineered, an interdisciplinary group that embeds peace, social justice, and environmental protection in engineering. I am originally from Mumbai, India, but feel equally at home in Michigan or Washington, D.C. (and now, the Valley!). I studied aerospace engineering (specializing in gas dynamics and combustion) and sustainability ethics at the University of Michigan. I then spent three years as a AAAS Fellow in Washington, D.C., first at the U.S
-learning community where students learned about and practice sustainability. Bielefeldt is also a licensed P.E. Professor Bielefeldt’s research interests in en- gineering education include service-learning, sustainable engineering, social responsibility, ethics, and diversity. American c Society for Engineering Education, 2020 Unconscious Bias in Peer Ratings of International Students’ Contributions to First-Year Design Projects?AbstractPeer ratings are often used to help award individual grades from team projects. It is thereforeimportant to understand the extent to which these peer ratings may be influenced by unconsciousor implicit bias
initiatives[27]–[29]. At UNL COE there are many initiatives aimed at augmenting engineering education to includenot just technical skills, but also leadership, intercultural appreciation, teamwork, self-management,service & civic responsibility, and understanding of engineering ethics [30]–[33]. Our interdisciplinary team includes a variety of engineering disciplines, student services staff toimplement direct support efforts, and a social science researcher who is expert in broadening participationresearch and evaluation. Further, our team is likely to be successful due to having broad institutionalsupport at the college level. This effort has strong potential to be successful and lead ultimately to a morediverse college across multiple
perceived as “real engineering”, which highlights an historically strong set of beliefs aboutpolitically or socially agnostic technical work coming into conflict with a systems approach [5](see also [11]).Riley et al. [12] point to limitations of service learning education in engineering generally, i.e.,limited student engagement with questions about the social, economic, and political interests metby the service learning framework. Relatedly, while Bielefeldt et al. [13] find that environmentalengineering faculty bring more topics about ethics and societal issues into their courseworkrelative to their peers in such fields as mechanical and civil engineering, they also find thatenvironmental engineering faculty perceive ethics and “broad impacts
to meet 7 outcomes.Outcome 4 states “Design appropriate solutions in one or more application domains usingsoftware engineering approaches that integrate ethical, social, legal, and economic concerns”. Itis through this outcome we expect students to design solutions that address ethical, social, legal,security, and economic concerns. The importance of security in the curriculum guidelines can benoted from the change in SE education Knowledge Areas. In the 2004 Curriculum Guidelines forUndergraduate Degree Programs in Software Engineering [4] security was listed as an area ofstudy. However in the 2014 Curriculum Guidelines for Undergraduate Degree Programs inSoftware Engineering [5] there is now an increase in the visibility of software
Director of Research at the Troost Institute for Leadership Education in Engineering, University of Toronto. Her research interests include engineering leadership in university and workplace settings as well as ethics and equity in engineering education.Mr. Mike Klassen, University of Toronto Mike Klassen is PhD Candidate in Higher Education at the Ontario Institute for Studies in Education at the University of Toronto. He was a long-time team member at the Institute for Leadership Education in Engineering (ILead). Mike has an MA in Higher Education and a BASc in Engineering Science from the University of Toronto.Jamie Ricci, Indspire Jamie Ricci is currently a researcher at Indspire, Canada’s largest charity supporting
be able to identify what solutions it truly needs. If we are [u]nstable in how we are connected to ourselves and those immediately around us, it will be virtually impossible for us to do it to the entire world. These lessons of understanding human experiences from different perspectives, empathizing with them and considering them in the decisions we make is what will set us apart as conscious and ethical engineers that add positive value to the world.Perhaps the strongest statement about the need for empathy and reflection in engineering camefrom a student who asserted that these were the tools that could prevent engineering fromperpetuating deeply entrenched systems of discrimination in society
Paper ID #17898An Evaluation of a Research Experience Traineeship (RET) Program for In-tegrating Nanotechnology into Pre-College CurriculumDr. Justin L Hess, Indiana University Purdue University, Indianapolis Dr. Justin L Hess is the Assistant Director of the STEM Education Innovation and Research Institute. In this role, Justin is working on improving the state of STEM education across IUPUI’s campus. Dr. Hess’s research interests include exploring empathy’s functional role within engineering and design; de- signing STEM ethics curricula; and evaluating students’ learning in the spaces of design, ethics, and
, 2016 From Problem Solvers to Problem Seekers: The Necessary Role of Tension in Engineering EducationIn this paper it is proposed that the current focus on problems in engineering education andtechnological literacy may be more constructively reframed by focusing on tensions. PriyanDias claims engineering has an identity crisis that arises from tensions inherent in: 1) theinfluence of the profession on society, 2) the role engineers play, and 3) what constitutes validknowledge in engineering. These are ethical, ontological, and epistemological tensionsrespectively, which Dias frames as a tension between identities of homo sapiens and homo faber.Beyond the tensions in engineering there are additional tensions that arise
experience: Assistant Professor, Universidad Icesi, Graduate lectures includes: Life Cycle Analysis, Process Management, Methods Engineering (manufacturing and service industry) & Process Improvement. c American Society for Engineering Education, 2016 Developing Student Outcomes in Real-World Learning Experiences: The Case of the Solar Decathlon in Latin AmericaAbstractEngineering students face a future in which professional skills (e.g., working inmultidisciplinary teams, ethics, and communicate effectively) will be equallyimportant as hard skills (e.g., design systems and solve technical problems).However, the development and assessment of these skills by the time ofgraduation is still a challenge for
in October, 2014. Per Board of Trustee approval, the BS Engineering Science programwould have three specializations: biomedical, computer, and environmental engineering. Per theDirector of the University Core Curriculum, the curriculum would include twelve liberal artscourses (36 semester cr hr). But other program aspects were undefined. As an engineeringgraduate of a sister Jesuit University and an engineering ethics textbook author, she believed thatthe combination of engineering and social justice was an obvious foundation for a program.Jesuit universities have emphasized social justice since the Jesuits’ General Congregation 32 in1975, when “the promotion of justice” was declared central to the Society of Jesus’ mission [13,14]. LUC
that these trends largelyfollow the overall enrollments in engineering programs at Lafayette, with increased shares of ABEngineering degrees awarded in the mid-1980s and 2000s.In the early 1980s, preceding and coincident with these large enrollments, the college’s first yearIntroduction to Engineering course was taught by one of the two founders of the AB inEngineering program, a charismatic and dynamic professor. This professor retired in 1988, and atthe same time the Introduction to Engineering course was replaced by a sophomore level courseon engineering professionalism and ethics. That students were no longer being introduced to themajor during their first year by an enthusiastic faculty member in a required class may havecontributed to
spiral, waterfall and agile. (Process) FDBK Demonstrate ability to make improvements after receiving constructive feedback. (Feedback) ETH Demonstrate an understanding of professional ethics appropriate to the use or development of computer science artifacts, and social impact of computer technology. (Ethics) ISPEC Demonstrate an understanding of intellectual property laws and ethics, software licenses, and commensurate rights. Demonstrate an understanding of security, privacy, and other ethical or legal issues, that arise in the context of computing. (Intellectual Property and Security) WRITE Write a clear document which meets the needs of the intended reader(s). (Writing) SPEAK
definition orscope of a wicked problem. Wicked problems exist in a dynamic knot of social, policy,economic, moral, ethical and technical dimensions. Attempts to solve wicked problemsfrequently yield unintended outcomes that render the solution unsatisfactory or incomplete.Environmental engineering practice addresses challenges more like wicked problems than tameproblems. Accordingly, teaching principles of environmental engineering “in context” of the realsocial, political, economic and technical dimensions that exist with the challenges professionalsface in practice provides students with an opportunity to develop critical thinking skillsnecessary to be successful in their careers. Assessment of teaching in-context, and examplesfrom different STEM
theseparticipants, 71% have presented their work at national professional society meetings, and two ofthem have become co-authors on three papers. Of the 17 who have since graduated, 13 are eitherin engineering graduate school or in STEM industry positions.REU students took part in an introductory bootcamp on the fundamentals of systems modelingand applied biostatistics and had multiple opportunities to present their research progressthroughout the summer to experts in the field. They also received professional developmenttraining through workshops and seminars on research ethics, technical communication, andlaunching careers in systems bioengineering. Post-REU surveys of participants revealed that100% of respondents rated their overall experience with the
experiential activities often lead to situations known as ‘disorientingdilemmas’ [4] compelling learners to critically reflect on their preconceived notions andassumptions. This reflection results in modifications to their established meaning perspectivesand the development of new frames of reference through a transformative shift in perspectives[26].A learner’s frame of reference comprises their habits of mind, shaped by life experiences,previous education, personal interests, and social influences [27]. Cranton [28] categorized theseinto six dimensions: Philosophical (dealing with transcendental worldviews), Moral and Ethics(related to conscience and morality), Psychological (pertaining to self-concept and personalitytraits), Sociological (involving
Review Board (IRB) conducts ethical reviews on all researchproposals involving human research participants, including the use of their personal data.Once the list of relevant stakeholders was finalised and IRB approval was granted, the secondphase began. To gather input from the stakeholders, survey forms and several focus groupdiscussions were originally planned. Unfortunately, Covid-19 pandemic struck and restrictedour approach to mainly online surveys. As such, survey forms were prepared and sent torespondents using “Verint” online survey system that allowed each respondent to receive aunique survey link via email. The response generated from each link was stored on thesystem safely.Despite the challenges presented by the pandemic, relatively
the United States. John has published on engineering-communication ped- agogy for many years, including papers on engineering ethics and communication; active-learning ped- agogies; and the intersection of engineering and theatre. He has also held multiple leadership roles at the section and national levels, including President of the Southeastern Section and the national Zone II Chair, and he presently serves as the ASEE Campus Representative for the University of Georgia. ©American Society for Engineering Education, 2024 The Bioengineering Professional Persona: A New Communication-Intensive Course for a New Program in a New- ish College of
content and learn about applications of AI ● Coordinating mentoring and support activities to build engagement ● Conducting a computing identity study, which is where our research team comes in ● And finally, conducting an evaluation on partnerships Project Context 12-credit Interdisciplinary AI HSCC Certificate Machine Learning AI Thinking Applied AI in Business AI & Ethics Foundations • AI and digital competency • Applied AI
anexample, one of the first assignments in our first engineering class - EGR 111 (Introduction toEngineering Thinking and Practice) - was a personal statement of what each student hoped to dowith an engineering degree and where they envisioned they would be after graduation. This wasnot an easy assignment but one that we would give back to students on graduation day (nearly 4years later). Similar visioning assignments like an Independent Development Plan (IDP) wouldbe part of the curriculum too and would continue to be improved by the founding faculty team(e.g. Melissa Kenny, Kyle Luthy, Kyana Young, Courtney DiVittorio). Ethical Leadershipassignments and Career Readiness assignments in capstone design, etc. Figure 3: Some of the
education can also be a tool forengineering design to develop better products by inspiring critical thinking. Considering justiceideas prompts engineers to develop socially-focused principles in the context of their engineeringtraining, which leads to more creative solutions to implementing projects to better servecommunities [16]. There have been many initiatives to encourage students to engage with socialjustice, ethics, and empathy focused material [17] [18] [19]. At the Colorado School of Mines, aprogram focusing on teaching engineering students’ empathy through user emersion has seenstudents developing more thoughtful solutions that work better for a diverse public. Theempathy focus expands students’ ability to think creatively and their
five weeks of RAMP, we added one-hour meetings twice a week committed toworkshops focusing on DEIB. The nine workshops that students participated in were based onvarious themes such as team building, intersectional identities, going beyond one’s comfort zone,culture wheels, power and privilege, microaggressions, identifying strengths and challenges,ethics, and exploring music and art reflective of the cultural heritage of the participants. Weemployed a variety of pedagogical strategies during the workshops including but not limited todiscussions, role plays, and games. Table 3 shows the structure of each of the nine workshops. Table 3: DEIB weekly session content and activitiesSession Session structure and activities
lack the structured guidanceand technical proficiency necessary for success. While they are often required to write, theirpreparation may be insufficient, hindering their competence and readiness for workforcedevelopment. This pilot study introduces a 9-week intensive course designed to address this gapby providing comprehensive instruction across a range of essential topics. These include goalsetting, topic selection, the research life cycle, ethics and misconduct, AI usage (such asChatGPT), and various writing skills such as illustration, data analysis, citation, and references.A key feature of the course is the opportunity for students to write a state-of-the-art reviewpaper, guiding them through the entire process—from drafting to peer
[5]. The ethical responsibility of engineers goes beyond the technical aspects of their work; they must consider the social and justice implications of the systems they create. For example, engineers can help reduce inequalities by designing accessible technologies that serve diverse populations or by developing infrastructure that meets the needs of underrepresented and underserved communities [5], [6]. This approach requires engineers to carefully evaluate how their work affects different social groups and to strive for solutions that promote inclusivity, equity, and justice. Engineers have a responsibility to ensure that their projects do not reinforce existing inequalities but instead work towards creating a fairer and more equitable
courses in Sustainability, Humanitiesand Social Sciences, Ethics, as well as soft skills such as writing, communication and teamwork.7,8,9 Strategies for pedagogical reforms included cornerstone and capstone courses, projectand problem-based learning, active participatory learning opportunities, instructionallaboratories, learning a second language, and foreign country internships.10,11,12,13Nevertheless, most engineering education programs continue to emphasize the technical aspects,while the social and environmental aspects remain externalized.14 Barbara Olds15 notes that “theeducation of science and engineering students has for too long been merely “technical”, oftenneglecting human complexity in order to achieve quantifiable correctness