suppliesand with E-Girl logistics (food, reserving rooms, etc.), and provided funding to expand theprogram to include more K-12 students. All the components mentioned in this section werecritical to the success of the model and to achieve the desired impact.The sustainability components discussed above were all developed and integrated during the firstyear of the program, and they were improved in the subsequent years. The CPP CoE students,faculty member, administrators and staff engaged in the different symbiotic program componentsto meet the program goals. The success of the complex collaboration was an important outcomeof the project. One of the recommendations for universities or colleges that would like to developa successful and sustainable
engineers must be taught to becreative and flexible, and topics of renewable energy are an effective vehicle for developingmulti-disciplinary instruction using a variety of content disciplines and academic standards.Preparing engineering students with the skills and knowledge required to be tomorrow’ssuccessful engineers in the 21st century. Our educational strategy, embedded in our program’scurricula, is based on experiential learning (including also self-directed learning), on discoveringsolutions to design problems that are sustainable, and is focused on helping students to recognizethat they are part of a global community. Throughout our curricula we offer a relevant andvalidated curriculum that prepares students for post-graduation success
) educators have soughtinnovative ways for integrating technology in teaching and learning to engage and build theinterest of secondary school students in STEM disciplines as well as to capture their imaginationabout STEM careers. Recent technological advancements have allowed design, development,and commercialization of low-cost mini unmanned aerial vehicles (MUAV) that offer a noveland ideal platform to support STEM disciplines in high school classrooms.1 This paper focuseson one illustrative example wherein four sections of a 9th grade quantitative research course,consisting of 25 to 30 students each, were engaged by a graduate researcher through an ARParrot 2.0 (see Figure 1) MUAV-based lab activity, which considered the research question“How
, and that of McLaughlin et al[24], who found that flipped classrooms are significantly better than traditional ones, is thepresence of a dedicated teaching assistant or team of teaching assistants to run the flippedclassroom. The TAs hold office hours, grade assignments, “functioning at the level of efficiencyand expertise of the instructor, especially as it relates to providing thoughtful written feedback”[24]. This interaction is especially important in mathematics or programming courses, whereworking problems is an important part of the curriculum. Mok [25] is an important example ofthis, having a team of dedicated teaching assistants that roved the classroom, allowing pairs ofprogramming students to engage a TA at will whenever “stuck or
Paper ID #40217Board 159: Developing An Assessment Toolkit for Pre-college SummerEngineering Workshops (Works-in-Progress)Dr. Tamecia R. Jones, North Carolina State University at Raleigh Tamecia Jones is an assistant professor in the STEM Education Department at North Carolina State Uni- versity College of Education with a research focus on K-12 engineering education, assessment, and infor- mal and formal learning environments.Dr. Leah Bug, North Carolina State University at Raleigh Dr. Leah Bug has over 35 years of experience teaching both formal and informal K-20 STEM education, with over 20 years in designing and
from Duke and NC State, respectively. Her research interests include engineering education and precision manufacturing.Dr. Anastasia Marie Rynearson, Campbell University Anastasia Rynearson is an Assistant Professor at Campbell University. She received a PhD from Purdue University in Engineering Education and a B.S. and M.Eng. in Mechanical Engineering at the Rochester Institute of Technology. Her teaching experience includes outreach activities at various age levels as well as a position as Assistant Professor in the Mechanical Engineering Department at Kanazawa Technical College and Future Faculty Fellow teaching First-Year Engineering at Purdue University. She focused on integrated STEM curriculum development as
development, possibly because (once again) they are so focused on the technicalrequirements of an engineering education. Next, there are no standardized teaching methodologiesor techniques available to teach creativity within the engineering leadership curriculum, despite awealth of general creativity techniques focused on specific creative activities, such as ideageneration. And finally, there has been little acknowledgement or push from either the professionalinstitutions or industries of the role of creativity in leadership development for engineers; withoutthis external recognition of its importance, it will be more difficult to persuade academicinstitutions to invest in creativity instruction within their engineering curricula.Exploratory
Paper ID #25567Student Views on their Role in Society as an Engineer and Relevant EthicalIssuesDr. Angela R. Bielefeldt, University of Colorado, Boulder Angela Bielefeldt is a professor at the University of Colorado Boulder in the Department of Civil, Environ- mental, and Architectural Engineering (CEAE). She has served as the Associate Chair for Undergraduate Education in the CEAE Department, as well as the ABET assessment coordinator. Professor Bielefeldt was also the faculty director of the Sustainable By Design Residential Academic Program, a living- learning community where interdisciplinary students learn about and
). Stagl et al. 15 summarizecurrent work in team leadership research and find that “the totality of research supports thisassertion; team leadership is critical to achieving both affective and behaviorally based teamoutcomes” (p. 172). Hill 16, supports this position in her team leadership chapter. In thedevelopment of their integrative team effectiveness framework, Salas et al.17 assert that leadershipplays a central role over the lifespan of the team, claiming that despite the complexities of teamleadership, “most would agree that team leaders and the leadership processes that they enact areessential to promoting team performance, adaptation, and effectiveness.”17 Additionally, Salas etal.17 assert that team leaders play an essential role due to
for engineering classes,” J. Eng. Educ., vol. 88, no. 1, pp. 53–57, 1999.[21] K. D. Dahm, S. Farrell, and R. P. Ramachandran, “Communication in the Engineering Curriculum: Learning to Write and Writing to Learn,” J. Eng. Educ. Transform., vol. 29, no. 2, pp. 1–8, 2015.[22] V. Svihla, “Advances in Design-Based Research in the Learning Sciences,” Front. Learn. Res., vol. 2, no. 4, pp. 35–45, 2014.[23] The Design-Based Research Collective, “Design-based research: An emerging paradigm for educational inquiry,” Educ. Res., vol. 32, no. 1, pp. 5–8, 2003.[24] J. R. Gomez and V. Svihla, “Building individual accountability through consensus,” Chem. Eng. Educ., vol. 53, no. 1, 2019.[25] J. R. Gomez, V. Svihla
students), then integrate that advice into an action plan. • Students in a difficult circumstance are not always good at integrating and acting on advice. The UGO staff discovered that students often did not follow up with ODOS (which was always part of our advice), or if they did, subsequent follow-up with the UGO or ODOS was lacking. Students struggled to manage and act on the on-going conversations across the UGO and ODOS offices, especially when they are in a Page 26.1049.4 compromised state due to their circumstances. • ODOS was not near the engineering precinct. The ODOS offices are centrally located on
secondary science teachers the tools to design and implement learning experiences for their students that are effective and authentic to the discipline. Much of this work has been centered on model-based inquiry and the integration of scientific practices in a supportive and structured way. He has been funded by NSF and other agencies to conduct research on preservice teacher education, undergraduate engineering education, and community partnerships in secondary education. c American Society for Engineering Education, 2018 Examining interventions to increase classroom community and relevancy in an early career engineering courseAbstractThe current NSF-funded project was
coaster project allows students to investigate and creatively apply their analytic skillsto an ambiguous, real-world problem that they are highly motivated to explore. It both reinforcesthe underlying curriculum and also helps students develop intellectually, as the project isdesigned to teach that dynamics isn’t so much about looking for the “right answer” as it is aboutchoices and simplifications made in modeling reality.Although roller coaster design projects have been used as the basis for entire undergraduatecourses and also in STEM activities for pre-college students, the author is unaware of a similarproject being included as part of a first course in dynamics. For this project, students in teams ofthree were tasked with designing
programmingexperience, a variable which was explored in our study. The ability to increase performance ingroups across all prior programming experiences, especially groups with low prior programmingexperiences is an important step to increasing the graduation rate of underrepresented groupswithin computing majors.Online modality of teachingThe coronavirus pandemic that hit the globe in 2020, required all our first year engineeringcourses in our school to be offered online. Prior to the fall 2020 semester, none of our first yearcourses had online offerings, and none of the instructors teaching first year engineering courseshad any experience with online teaching, or incorporating active learning components into thecourse curriculum. This added another dimension
Paper ID #23672Implementation of an Engineering Summer Camp for Early-Elementary Chil-dren (Work in Progress)Dr. Laura Bottomley, North Carolina State University Dr. Laura Bottomley, Teaching Associate Professor of Electrical Engineering and Elementary Education, is also the Director of Women in Engineering and The Engineering Place at NC State University. She has been working in the field of engineering education for over 20 years. She is dedicated to conveying the joint messages that engineering is a set of fields that can use all types of minds and every person needs to be literate in engineering and technology. She
School of Theater and Dance (SoTD). After this experience, Dr. Akc¸alı began experimenting with the use of arts-integrated teaching and learning methods in engineering education.Mariana Buraglia, University of Florida Mariana Buraglia has both a master’s and bachelor’s degree from the Department of Industrial and Sys- tems Engineering at the University of Florida (UF). She is passionate about science, technology, en- gineering, arts, and mathematics (STEAM) education and research. Through the Society of Hispanic Professional Engineers (SHPE), she led an outreach program to promote STEAM education for elemen- tary to high school students. She also served as a facilitator for a Girls Who Code (GWC) chapter and as
]–[50], sharedexperiences (e.g., enrollment at the same university), and values. In that context, it is important for female students to see successful female STEMentrepreneurs for both symbolic as well as functional reasons [46], [51]. Symbolically, exposureto female STEM entrepreneurs can signal to female students that STEM entrepreneurship is notonly for men and that women can be successful in entrepreneurship. Functionally, femalestudents are likely to pay greater attention to female STEM entrepreneurs and take an interest inhearing about the challenges they have faced and how they have integrated the seeminglyconflicting social roles of being an entrepreneur and a woman. Consequently, we propose thatfemale students who are part of
arecontinuously presented with faculty and student populations that lack in diversity creates barriersfor a non-majority student to effectively integrate into the discipline [23]. Computer sciencefaculty influence the maintenance and propitiation of the storyline regarding who belongs incomputer science due to their “membership” status in the professional computing world and theirbelief of what constitutes a computer science professional [22], [24]. These faculty typicallydraw upon their own professional experiences and practices as majority members as arepresentation of “legitimate” work in computer science—including their research, educationalbackground and curriculum. It follows that the faculty intentionally or unintentionally introducenorms and
learning, and enhancing diversity, equity, and inclusion in the classroom. ©American Society for Engineering Education, 2023 Toy Adaptation in a Laboratory Course: An Examination of Laboratory Interests and Career MotivationsAbstractCurricula containing accessibility topics with positive societal impact are useful in careertraining and have shown promise in engagement of students from groups historically excludedfrom and underrepresented in engineering. Toy adaptation makes toys accessible to kids withdisabilities and is a hands-on process that involves toy disassembly, circuitry assessment, andaddition of an accessible switch. Previous work incorporating toy adaptation into curriculum
where some students do not have the internetbandwidth or equipment to do this effectively. As a result, the main method of challenging anypotential issues with academic integrity is to randomize the problems.In an in-person class, all students would be provided the same problems with the same numbersbut potentially in a different order along with randomized seating. However, for the online exam,students received the same problem but with variations to the loading locations and values. Thiswould still test students on the same objectives at the same level of difficulty but would deterstudents from trying to direct copy. As students were required to submit hand calculations, theinstructor was reviewed them for any unusual responses or signs of
Paper ID #29409Kindergartners’ Engagement in an Epistemic Practice of Engineering:Persisting and Learning from Failure (Fundamental)Pamela S. Lottero-Perdue Ph.D., Towson University Pamela S. Lottero-Perdue, Ph.D., is Professor of Science and Engineering Education in the Department of Physics, Astronomy and Geosciences at Towson University. She has a bachelor’s degree in mechanical engineering, worked briefly as a process engineer, and taught high school physics and pre-engineering. She has taught engineering and science to children in multiple formal and informal settings. As a K- 8 pre-service teacher educator, she
veteran undergraduates in engineering.Theresa Green, Utah State University Theresa Green is a graduate student at Utah State University pursuing a PhD in Engineering Education. Her research interests include K-12 STEM integration and improving diversity and inclusion in engineer- ing. c American Society for Engineering Education, 2019 1 An Inquiry into the Use of Intercoder Reliability Measures in Qualitative ResearchWhen compared to quantitative approaches, qualitative approaches are relatively newer to theengineering education research community (Borrego, Douglas, & Amelink, 2009). As thecommunity
Paper ID #29090Preparing HS Students to Succeed in STEM Fields via an Early CollegeExperience (Evaluation)Dr. Kathryn Schulte Grahame, Northeastern University Dr. Kathryn Schulte Grahame is an Associate Teaching Professor at Northeastern University and a mem- ber of the first-year engineering team. The focus of this team is on providing a consistent, comprehensive, and constructive educational experience that endorses the student-centered, professional and practice- oriented mission of Northeastern University. She teaches the Cornerstone of Engineering courses to first- year students as well as courses within the Civil
program to earn aminor in Computing Applications. Many of these courses are taught by non-CS faculty and thecourse contents are adapted for life sciences students. Every course is assigned a dedicated groupof peer mentors who assist instructors and students during lectures and hold separate mentoringsessions every week. The curriculum for the Computing Applications minor (aka PINC minor) consists of thefollowing five courses, and the recommended course sequence is as follows: Fall (Year 1, Semester 1) ● CSc 306: An Interdisciplinary Approach to Computer Programming Spring (Year 1, Semester 2) ● CSc 219: Data Structures and Algorithms Fall (Year 2, Semester 3) ● CSc 308: An Interdisciplinary
mechanics related to fracture, composite materials and glaciology. In recent years, he has focused on issues of mathematical education and outreach and he has developed a wide range of K-12 outreach projects. His current interests include the mathematical education of teachers, the scholarship of outreach, computational mathematics, and complex dynamics.Dr. Sonya E. Sherrod, Texas Tech University Sonya Sherrod holds a B.S. and an M.A. in mathematics and a Ph.D. in curriculum and instruction. Her research interests include instructional approaches that help students (K-12) learn mathematics concep- tually and instructional strategies that motivate preservice teachers to relearn mathematics conceptually, to empower
Paper ID #16789Social Consciousness in Engineering Students: An Analysis of Freshmen De-sign Project AbstractsMaya Rucks, Louisiana Tech University Maya Rucks is an engineering education doctoral student at Louisiana Tech University. She received her bachelor’s degree in mathematics from the University of Louisiana at Monroe. Her areas of interest include, minorities in engineering, K-12 engineering, and engineering curriculum development.Dr. Marisa K. Orr, Louisiana Tech University Dr. Orr is an Assistant Professor in Mechanical Engineering and Associate Director of the Integrated STEM Education Research Center (ISERC) at
andrelationships to understand how failure and frustration might manifest to shape motivation andinterests, despite children spending most of their waking hours outside of school environments[36].Parents, Emotional Socialization, and LearningAlongside educators and typical classroom spaces, families and out-of-school contexts often playan important role in the learning and development of children [37], [38]. Ma and colleagues [39]discuss several domains of learning outcomes for young children (e.g., behavioral involvement,personal involvement, intellectual involvement) all of which include parents or caregiversplaying an integral and influential role. The parent-child relationship itself has been found toinclude several relational domains, which also
Engineering from Wright State University, in Day- ton, Ohio. Her experience with teaching first-year engineering students has led to research interests in curriculum development, student empowerment and the development of holistic engineers through the collaboration with engineering stakeholders.Prof. Amy Rachel Betz, Kansas State University Dr. Amy Betz is an Assistant Professor and the director of the Multiphase Microfluidics Laboratory at Kansas State University. She received her PhD from Columbia University and her Bachelor of Science in Mechanical Engineering from the George Washington University. Her research aims to acquire new fundamental understanding of phase-change processes. She is passionate about research
Paper ID #42939Investigating Transition Phases: An Autoethnographic Study of InternationalWomen of Color Engineering Educators in the U.S.Maimuna Begum Kali, Florida International University Maimuna Begum Kali is a Ph.D. candidate in the Engineering and Computing Education program at the School of Universal Computing, Construction, and Engineering Education (SUCCEED) at Florida International University (FIU). She earned her B.Sc. in Computer Science and Engineering from Bangladesh University of Engineering and Technology (BUET). Kali’s research interests center on exploring the experiences of marginalized engineering
high schools that haveJROTC programs. The Project offers a multi-year pathway to JROTC Cadets in order to earn abadge (an award of recognition) from their JROTC programs (Figure 1), and supports the missionof CSforALL, which is to make high-quality CS education an integral part of the educationalexperience for all cadets and teachers.To build capacity for CS and cybersecurity education among the 30 schools invited as part of theDemonstration Project cohort, CSforALL implemented a modified version of their SCRIPTworkshop [6]. This workshop provided a strategic way to encourage and develop evidence-basedCS course (e.g., AP CS Principles) offerings. Each school had a team of educators (e.g.,administrators, teachers, JROTC instructors, and/or