theoretical analysis and experimental investigations such as designing and testing of propulsion systems including design and development of pilot testing facility, mechanical instrumentation, and industrial applications of aircraft engines. Also, in the past 10 years she gained experience in teaching ME and ET courses in both quality control and quality assurance areas as well as in thermal-fluid, energy conversion and mechanical areas from various levels of instruction and addressed to a broad spectrum of students, from freshmen to seniors, from high school graduates to adult learners. She also has extended experience in curriculum development. Dr Husanu developed laboratory activities for Measurement and Instrumentation
in a meaningful way to create an enriching learning experience. Moreover,designing assessments that stretches students’ thought-process is critical to engineeringpedagogy. This is implemented in the course as structured threaded discussion forums, governedby instructors that provide thought-provoking guiding questions followed by peer discussion.This essay also explores the design and implementation of virtual laboratory sessionscomplementing the bi-weekly homework assignments and a final project. It describes theassessment design decisions, based on the overall course learning outcomes, taken to suit theonline learners. The aim of this essay is to inform, the community of asynchronous onlinecomputer engineering educators, of assessment
solution is a new cloud service known as HPC-as-a-Service.In this paper, we present an HPCaaS platform called ASETS which uses Software DefinedNetworking (SDN) technologies to smooth the execution of parallel tasks in the cloud. Further,we provide application examples that could be used in a typical introductory parallel programingcourse. We argue that HPCaaS platform like ASETS can significantly benefit the users of HPCin the cloud as if their program is running on a dedicated hardware in their own laboratory. Thisis especially advantageous for students and educators who need not to deal with the underlyingcomplexities of the cloud.1. IntroductionCloud Computing according to NIST1 is a shared pool of configurable resources offeringservices with
Research Advisor to the Stanford University Epicenter.Dr. Michael R. Ladisch, Purdue University, West Lafayette Michael R. Ladisch is Director of the Laboratory of Renewable Resources Engineering (LORRE), and Distinguished Professor of Agricultural and Biological Engineering with a joint appointment in the Wel- don School of Biomedical Engineering. He was CTO at Mascoma Corporation from 2007 to 2013 and serves on Agrivida’s SAB. His BS (1973) from Drexel University and MS (1974) and PhD (1977) from Purdue University are in Chemical Engineering. Ladisch’s research addresses transformation of renew- able resources into biofuels and bioproducts, protein bioseparations, and food pathogen detection. He is an author of two
Paper ID #16534Understanding Learner’s Mental Models of a Task as Shaped by the PhysicalFidelity of a Learning EnvironmentMs. Myrtede Christie Alfred, Clemson University Myrtede C. Alfred is a PhD student in the Department of Industrial Engineering at the Clemson University. She received her M.S in Industrial Engineering from Clemson University in 2013 and a BBA in Human Resources Management from Florida International University in 2009. She is graduate teaching assistant in the Department of Industrial Engineering. She is also a Southern Regional Education Board Fellow and Clemson University Diversity Fellow. Her
Paper ID #17466Advancing Training Pathways for the Renewable Energy WorkforceMs. Jill Davishahl, Bellingham Technical College Jill Davishahl is a faculty member in the engineering department at Bellingham Technical College where she teaches courses ranging from Intro to Engineering Design to Engineering Statics. Outside of teaching, Jill is working on the development of a Bachelor of Applied Science in Engineering Technology (to be offered at BTC) and is currently PI on the NSF funded ATE project grant in renewable energy. She holds a Master of Science in Mechanical Engineering from the University of Washington.Prof
second problem ex-ists by Knuth’s design: choosing a source document from which LP tools produce both sourcecode and a formatted document prevents direct modification of either the source code or the for-matted document, isolating authors from the writing they must do. For these reasons, no literateprogramming tool has gained widespread acceptance in the programming community or for sus-tained pedagogical use.This last point is substantiated by noting that most education-focused research using literate pro-gramming tools took place in the 1990s. Efforts in this area include using LP tools to grade home-work submissions8, teach programming9 (with success, but accompanied by student complaintsabout the difficulty of LP tools), or write better
Paper ID #14516MAKER: An Entry-Level Robotic System Design Project for Undergradu-ates and K12Dr. Rex H. Wong, Vaughn College of Aeronautics & Technology Currently a professor at Vaughn College of Aeronautics and Technology, located at Queens, New York. The courses I teach include DC/AC electric circuits analysis, control and communications systems, mecha- tronics and robotics, as well as some avionics courses in the past. My interests of research area lies in robotics and its applications, particularly in service robotics (domestic or industrial), and integrated network of robotics and sensors (Internet of Things
Paper ID #14873Innovative Design within the Context of Virtual Internships: How Can It BeDefined and How is It Related to the Student Design Process?Matthew Raymond Markovetz, University of Pittsburgh Matthew Markovetz is Ph.D. Candidate in Chemical Engineering at the University of Pittsburgh. His inter- est in both engineering education and technical engineering research developed while studying Chemical and Biological Engineering at the University of Colorado at Boulder. Matthew’s research in education focuses on methods that increase innovation in product design, and his laboratory research seeks to un- derstand and
design project is the Rodent Tracker; a mechatronics solution for managing wiring harnesses of laboratory rodents in large-scale obstacle courses. Address: Department of Mechanical Engineering, University of Utah, 1495 East 100 South, 1550 MEK, Salt Lake City, UT 84112 Phone: 801-808-3571 Email: nicolas.n.brown@gmail.comMs. Joy Velarde, University of Utah Joy Velarde is an Academic Advisor in the Department of Mechanical Engineering at the University of Utah. She has a Bachelor of Science degree in Psychology from Brigham Young University and a Master of Arts degree in Higher Education Administration from Boston College.Dr. Debra J Mascaro, University of Utah Debra J. Mascaro is the Director of Undergraduate Studies
American Society for Engineering Education, 2016 Preparing Aerospace Engineering Students for Career in UAV TechnologiesAbstractUnmanned Aerial Vehicles (UAVs) have potential of reducing human casualty and cost formany dull, dirty, and dangerous missions. UAVs are one of the fastest growing sectors ofAerospace Industry. However, there is a lack of professionals entering the workforce. There isalso a lack of students pursuing studies for graduate degrees in the UAV related areas. Thispaper talks about innovative projects and teaching practices designed to increase students’interest and involvement in UAV related projects. Many aspects of UAV technologies are not orcannot usually be taught in classroom
. William ”Bill” C. Oakes, Purdue University, West Lafayette William (Bill) Oakes is the Director of the EPICS Program and one of the founding faculty members of the School of Engineering Education at Purdue University. He has held courtesy appointments in Mechanical, Environmental and Ecological Engineering as well as Curriculum and Instruction in the College of Education. He is a registered professional engineer and on the NSPE board for Professional Engineers in Higher Education. He has been active in ASEE serving in the FPD, CIP and ERM. He is the past chair of the IN/IL section. He is a fellow of the Teaching Academy and listed in the Book of Great Teachers at Purdue University. He was the first engineering faculty
organizations and individuals engage in technological innovation.Dr. Micah Lande, Arizona State University, Polytechnic campus Micah Lande, Ph.D. is an Assistant Professor in the Engineering and Manufacturing Engineering pro- grams at the Polytechnic School in the Ira A. Fulton Schools of Engineering at Arizona State University. He teaches human-centered engineering design thinking, making and design innovation project courses. Dr. Lande researches how technical and non-technical people learn and apply design thinking and mak- ing processes to their work. He is interested in the intersection of designerly epistemic identities and vocational pathways. Dr. Lande received his B.S in Engineering (Product Design), M.A. in
resonator arrays.Dr. Colleen Janeiro, East Carolina University Dr. Colleen Janeiro teaches engineering fundamentals such as Introduction to Engineering, Materials and Processes, and Statics. Her teaching interests include development of solid communication skills and enhancing laboratory skills.Dr. William E. Howard, East Carolina University William E (Ed) Howard is an Associate Professor in the Department of Engineering at East Carolina University. He was previously a faculty member at Milwaukee School of Engineering, following a 14- year career as a design and project engineer with Thiokol Corporation, Spaulding Composites Company, and Sta-Rite Industries. c American Society for Engineering
Paper ID #16813Student Proposals for Design Projects to Aid Children with Severe Disabili-tiesDr. Steve Warren, Kansas State University Steve Warren received a B.S. and M.S. in Electrical Engineering from Kansas State University in 1989 and 1991, respectively, followed by a Ph.D. in Electrical Engineering from The University of Texas at Austin in 1994. Dr. Warren is an Associate Professor in the Department of Electrical & Computer Engineering at Kansas State University. He directs the KSU Medical Component Design Laboratory, a facility partially funded by the National Science Foundation that provides resources for the
Education at Purdue University. She received a B.S. in Materials Science and Engineering from the University of Wisconsin-Madison, and she is a former high school chemistry and physics teacher. Her research interests are in K-12 STEM integration, primarily using engineering design to support secondary science curricula and instruction.Mr. Aran W. Glancy, University of Minnesota, Twin Cities Aran Glancy is a Ph.D candidate in STEM education with an emphasis in Mathematics Education at the University of Minnesota. He has experience teaching both high school physics and mathematics, and his research focuses on supporting mathematics learning, specifically in the domains of data analysis and measurement, through STEM
Paper ID #15772Summer Bridge Program Structured to Cover Most Demanding STEM Top-icsMs. Megan McSpedon, Rice University Megan McSpedon is the Associate Director of the Rice Emerging Scholars Program. She has been with the program since it was founded in 2012. Megan received a B.A. in English from Rice University.Dr. Ann Saterbak, Rice University Ann Saterbak is Professor in the Practice in the Bioengineering Department and Associate Dean for Un- dergraduate Education in the School of Engineering at Rice University. Saterbak was responsible for developing the laboratory program in Bioengineering. Saterbak introduced problem
the area of engineering education research. In his position he is managing several research and development projects on engineering education and technical training. Furthermore he of- fers workshops on professional teaching and learning for engineering faculty. In his research Dominik May focuses, inter alia, on future requirements for science and engineering graduates, such as interna- tional competence, in order to become successful engineers in a globalized professional world. Therefore he designs and investigates respective educational strategies with a special focus on online solutions and the integration of remote laboratories. For his research and the development of several transnational on- line courses he
University of Nevada, Las Vegas, as an Assistant Professor. His research interests include design and optimization of mechanical systems, characterization of material properties under dynamic loading, system identification and control of smart actuators. Dr. Trabia has been the author of more than 150 technical journal and conference papers. He was involved with multiple funded research grants with total budget exceeding 6 million dollars. Dr. Trabia is a Fellow of the American Society of Mechanical Engineers (ASME). Dr. Trabia has received multiple awards recognizing his teaching, research, and service efforts including, the ASME Dedicated Service Award.Mrs. Julie A. Longo, University of Nevada - Las Vegas Julie
Staticsconcepts from the previous class, and the rest of the class is assigned for a highly visualized andinteractive type of lecture, and other course activities described in the course (syllabus).B. Motivations behind selecting this target domainMany teachers who teach Statics are disappointed regarding the inability of their students inapplying the learned concepts in analyzing and designing the real world problems in succeedingcourses for which Statics is considered as a cornerstone (Condoor et al., 2008). Based on theauthor's experience in teaching the subject topic, students normally struggle learning Statics, asmost of the time their main focus is on memorizing the mathematical modules and equationsused for solving the problems, while they miss
member, inviting a speaker to discuss gender equity issues specificto the discipline, or sending a faculty member to recruiting trips, among other activities. Finally,the ADVANCE director also had additional funding to recognize the department that made themost progress on the gender equity goals, by hiring or developing programming to supportdiverse faculty, based on their plan.Fifth, Acker argues, given that gender is embedded within power/class structures, evenindividuals who support gender equity may not want to make the associated changes to theunderlying power/class structure. One significant gendered power/class structure is the type offaculty appointment. Academic appointments include tenure-track faculty members withresearch, teaching
programs, including both crewed and robotic spacecraft. After retiring from NASA, the Head of the Aerospace Engineering Department at Texas A&M University asked him to come to A&M as a Senior Lecturer to teach a Senior Capstone Design course focusing on Spacecraft Design. In September 2014 he became an Associate Professor of Practice in the Aerospace Engineering Department at Texas A&M. He began his fourth year of teaching at Texas A&M in September 2014.Joanna M. Schiefelbein , Texas A&M University Joanna M. Schiefelbein is a recent graduate of Texas A&M University with a Bachelor of Science in Aerospace Engineering. Looking forward to a career in the space industry, Joanna customized her degree
presentedto detail the existing research performed in the empathy domain. 2.1. Design Education in Engineering CurriculaEngineering education prepares students for industry by teaching them competencies within theirspecific field. However, research has indicated that engineering education often fails to considersome of the soft skills necessary to excel as a graduate engineer 13. These include teamwork,interpersonal skills, communication skills, and emotional intelligence such as empathy 4. Manyresearchers indicate that empathy is essential in both informal and professional settings 4. Yet, ithas been found that many of the current students and recent graduates pursuing engineeringfields exhibit lower levels of empathy 14. This disparity can
Mechanical Systems: A Capstone Course in Mechanical Engineering Design,” ASEE Annual Conference & Exposition (ASEE 1984), pp. 803-807.5. Todd, R. H., S. P. Magleby, C. D. Sorensen, B. R. Swan and D. K Anthony, “A Survey of Capstone Engineering Courses in North America,” Journal of Engineering Education, vol. 84, no. 2, 1995, pp. 165-174.6. Banios, E. W., “Teaching Engineering Practices,” Proceedings, 1992 Frontiers in Education Conference, IEEE, 1992, pp. 161-168.7. Todd, R. H., C. D. Sorensen, and S. P. Magleby, “Designing a Senior capstone Course to Satisfy Industrial Customers,” Journal of Engineering Education, vol. 82, no. 2, 1993, pp. 92-100.8. Rochefort, S., “An Innovative ChE Process Laboratory,” Chemical Engineering Education
students. The course istaught by an assistant professor in the civil engineering department specializing in structural andmaterials engineering. The students met in a small classroom (20 student capacity) located in thecivil engineering teaching laboratory once per week for one hour and twenty minutes. Theclassroom was equipped with four large tables capable of seating up to five students, fourcomputers, a projector, and a 3D printer. Each computer was equipped with Microsoft Office®AutoCad®, STAADPro® and PASCO®. The students were provided with weekly lecturematerial via PowerPoint presentations and embedded video tutorials. All lecture material andproject descriptions were made available to the students four to five days prior to the lecture.The
. His research focuses on the teaching and learning of physics. He is particularly interested in issues pertaining to transfer of learning and problem solving in physics and engineering. Most recently his research has focused on using the principles of visual cognition to design multimedia hints and cues to facilitate problem solving. This research has potential applications for the design on online learning environments.Prof. Michael R. Melloch, Purdue University, West Lafayette Michael R. Melloch received the B.S.E.E., M.S.E.E., and Ph.D degrees from Purdue University in 1975, 1976, and 1981 respectively. From June 1976 to August 1978 he was a design engineer at Intel Cor- poration (Santa Clara, CA) where he worked
. Dr. Farrell has contributed to engineer- ing education through her work in experiential learning, focusing on areas of pharmaceutical, biomedical and food engineering. She has been honored by the American Society of Engineering Education with sev- eral teaching awards such as the 2004 National Outstanding Teaching Medal and the 2005 Quinn Award for experiential learning. Stephanie has conducted workshops on a variety of topics including effective teaching, inductive teaching strategies and the use of experiments and demonstrations to enhance learning.Dr. Erin A. Cech, Rice University Erin Cech is an Assistant Professor in the Department of Sociology at Rice University. Before coming to Rice in 2012, Cech was a
plan defines when, thefrequency, and the number of SOs to be evaluated. This evaluation is of the corresponding SOs’own cycle of assessment before the next accreditation.The GR assessment model has the following characteristics: • Since only mastery-level courses are being assessed, even without dedicated toolsets, the process can be achieved manually with commonly available tools like Words, Excel, etc. in a timely manner. • Independent raters remove the involvement of faculty teaching the courses during the evaluation process.The process is particularly time effective if the assessed results at the end meet the expectations,since laterally you could justify meeting an outcome by investigating evidence from one courseat
knowledge andconceptual understanding to real-world problems or situations where the instructor directs andfacilitates learning [1]. According to Wurdinger and Carlson, 2010, [1] the classroom,laboratory, or studio can serve as a setting for experiential learning through embedded activitiessuch as case and problem-based studies, guided inquiry, simulations, experiments, or art projects. Spring 2016 Mid-Atlantic ASEE Conference, April 8-9, 2016 GWUAccording to University of Texas at Huston, Learning Sciences [2] when students are givenopportunities to learn in authentic situations on campus or in the community like those providedin internships, field placements, clinical experiences, research and service-learning projects
, Brookhaven National Laboratory, European Southern Observatory (Chile), Simula Research Laboratory (Norway) and the University of Illinois-Urbana Champaign. Christine works closely with Penn State University faculty Michael Alley (The Craft of Scientific Presentations and The Craft of Scientific Writing) and Melissa Marshall (TED, ”Talk Nerdy to Me”) on these courses. Christine is also the director of the Engineering Ambassadors Network, a start-up organization at 25 plus universities worldwide that teaches presentation skills to undergraduate engineering students, particularly women and underrepresented groups in engineering. These Engineering Ambassadors develop valuable leadership and communication skills, which