, who developed the minor and course offerings and whocurrently serves as the minor coordinator, has a PhD in the Civil engineering and is a licensedprofessional engineer (PE) with several years of consulting and construction experience. Toenhance the pool of faculty supporting the minor, the newest faculty hired, also holds a PE incivil engineering with extensive design and consulting experience in the marine environment.Much of the cost of initiating the minor was funded by the general administration of theinstitution and its programs. From the administration’s perspective, elements that should beconsidered in the cost of initiating a new minor include: ● Hiring new faculty to support program. ● Assignment of classroom and laboratory
, technology, architecture and buildingsciences, through integration of VR. VR was used to leverage a seamless virtual application thuscomplementing theories with unlimited interactive pedagogies, which kept learners engaged,interested and ultimately fosters retention particularly in haptic courses. Specifically, this studyintegrates the VR technology into an Environmental Science Laboratory to support teaching,enhance students’ understanding, and increase retention as well as triggering an interactiveeducational environment. This paper focuses on the method of advancing haptic learning withVR through introducing and analyzing five modules taught in a building sciences laboratorycourse in addition to sharing limitations and some lessons learned of
. The United Nations World Water Development Report 2015..12. Brogan DS, McDonald WM, Lohani VK, and Dymond RL, 2016. Development and Classroom Implementation of an Environmental Data Creation and Sharing Tool. Advances in Engineering Education, In Press.13. McDonald WM, Brogan DS, Lohani VK, and Dymond RL, 2015. Assessing Cognitive Development and Motivation with the Online Watershed Learning System (OWLS). ASEE 122nd Annual Conference & Exposition, June 14 – 17, 2015, Seattle, WA.14. Ma J and Nickerson JV, 2006. Hands-on, simulated, and remote laboratories: A comparative literature review. ACM Computing Surveys (CSUR), 38(3), 7. doi:10.1145/1132960.1132961.15. Balamuralithara B and Woods PC, 2009. Virtual laboratories in
samescenario tested in this experiment. Figure 20 shows the results of the FEA simulation run for theFSAE spaceframe. The simulation was run with 400 ft-lbf, an average suspension load, appliedacross the front axle. The torsional stiffness at the front axle from FEA was calculated to bearound 1100 ft-lbf/deg. This is within 10% of the value calculated from the experimental setup. Figure 20: The results of the torsional rigidity computer simulation.Course StructureThe implementation of the laboratory experiment consisted of both horizontal and verticalcurricular integration with other courses.Horizontally, this laboratory experiment in ME160 Engineering Experimentation is an extensionof an experiment that is done earlier in the course
the greater skillof engineering design2. A traditional engineering education will incorporate lectures, a fewproofs, a small number of hands on laboratories that relate to some of the topics being discussed,and are concluded with a capstone course that should serve as the culmination of all othercoursework and demonstrate the ability to follow the engineering design process. However, dueto the low number of retention (around 62 percent for all STEM majors1), and less than 5 percentof the nationally awarded degrees in engineering2, it is possible that the minimum engineeringcurriculum may not be enough to successfully graduate engineers. If the goal is to produce engineers that can effectively contribute to the work force, then itwould
near industrial technology laboratory building at Sam Houston StateUniversity were the vibration source. The building used for this project is a combined laboratory Page 26.599.4and shop and classroom facility with two condenser units–one single fan and one twin fan. Theinitial study employs the twin fan unit. Initially, the AC condenser unit was studied, and potentialpaths of the study were generated.Figure 3. R-410A XP series 6-1/2 ton 60Hz AC Condenser UnitFigure 4. Pictorial of AC condenser unit showing waste energy sources for energy harvestingViewing the unit from above, the rotation of both fans is clockwise. The fan blade length
engagement and formal cooperative learning, are being utilized tointentionally cultivate these habits of mind across courses in 5 disciplines. They are based on acommon architecture in all ESTEME@OSU classes: larger “lectures” punctuated by small sectionstudio workshops (or laboratories). The relationship of EBIPs, environment, and learning goals isshown in Table 1.Table 1. Relation of evidence-based instructional practice to learning goals Evidence-based Practice Environment Leaning Goal Interactive Engagement with Lecture Conceptual Understanding: Well-Connected Knowledge frequent formative feedback Studio Workshop Formal Cooperative Learning
in the engineering classroom.Dr. Paul B Golter, Washington State University Paul B. Golter obtained an MS and PhD Washington State University and made the switch from Instruc- tional Laboratory Supervisor to Post-Doctoral Research Associate on an engineering education project. His research area has been engineering education, specifically around the development and assessment of technologies to bring fluid mechanics and heat transfer laboratory experiences into the classroom.Prof. Robert F. Richards, Washington State University Dr. Robert Richards received the PhD in Engineering from the University of California, Irvine. He then worked in the Building and Fire Research Laboratory at NIST as a Post-Doctoral Researcher
, communication skills, andprofessionalism. As a foundation for sustained success in mechanical engineering, additionalcourse topics include: lifelong learning, time management, community and professional service,and career development. Laboratory: two hours.Course Objectives: Students who successfully complete the course requirements should be ableto: 1) Explain the engineering profession and engineering ethics. 2) Use technical communication skills to explain the results/analysis of introductory laboratory exercises. 3) Explain engineering analysis and design. 4) Analyze data collected during laboratory exercises. 5) Analyze the impact engineering has had on the modern world. 6) Design a simple engineering device, write a design
line environment. Paper discusses all the different tools employed likePutty and WinSCP and Eclipse IDE that will be needed in the execution of software Design onPC. Laboratory exercises covered the interfacing, controlling, and communicating with thephysical environment.Through this course the students in Electrical and Computer Engineering Technology programdevelop the design template that they utilize in a Capstone Senior Design two course sequenceand become proficient system designers for tackling challenges of the industry. The pedagogy ofthe course delivery is based on “Interactive Learning model”, utilizing the methodology ofOutcome Based Education. Outcome Based Education’s end result is the students’ designprojects performed at the
used as a laboratory experiments to apply the first and second laws. Thereal-life experiments enhanced students learning of some thermodynamics principles. In a classproject, students were asked to select a commercial thermal cycle, analyze its performance anddiscuss the difference between the actual device and the theoretical model, Li and Zhou.29Toro et al.30 presented a desktop scale Rankine cycle with a solar-powered boiler for use as ahands-on laboratory experiment. Patterson31 collected real-life thermodynamic examples in abooklet to enhance teaching of thermodynamics. The examples were designed using parts of theconstructivist learning theory. Hands-on demonstrations built from common laboratorycomponents to enhance the learning in
, California) used this design approach for itscurricula5. We are using a combination of instructional systems and “Backwards Approach(BA)” to re-design UV curricula.BA design6,7 is a method of designing curriculum by choosing learning outcomes beforeinstructional methods or assessments. This means one chooses the outcome of the learningexperience first, and let’s that guide the teaching/learning and the assessment/evaluation. Thismethod challenges "traditional" methods of curriculum planning in which a list of contentthat will be taught is created and/or selected first and teaching/assessment methodologyusually are lectures and laboratories, with written exams as assessment of learning. Inbackward design, the educator starts with goals, creates or
Corporation researching the use of flow control in aggressive engine inlet ducts. After graduation, Dr. Vaccaro held a lead engineering position with General Electric Aviation in Lynn, Massachusetts. There, he designed the fan and compressor sections of aircraft engines. He frequently returns to General Electric Aviation as a consultant. Currently, he is an Assistant Professor of Mechanical Engineering at Hofstra University in Hempstead, New York where he teaches Fluid Mechanics, Com- pressible Fluid Mechanics, Heat Transfer, Heat Transfer Laboratory, Aerodynamics, Measurements and Instrumentation Laboratory, and Senior Design in addition to conducting experimental aerodynamics un- dergraduate research projects.Dr
engineering department and lately more instructional resources becameavailable 2, making SDR technology excellent choice for teaching both undergraduate andgraduate courses in communications. An example of instructional packages are offered byNational Instruments, including hardware platforms, software packages and communicationrelated teaching modules. Integrated curricula with SDR, across areas such as communications,signal processing, computer programming, electromagnetics, and embedded systems, wereintroduced in six US universities, in each case with a major laboratory component 3.Comparisons between course levels, majors, laboratory components, hardware and programmingenvironment used were discussed for the six universities participating and the
. He got his BS from University of Mysore, DIISc from Indian Institute of Science, MS from Louisiana State University and PhD from Drexel University. He has worked in the area of Electronic Packaging in C-DOT (India) and then as a Scientific Assistant in the Robotics laboratory at Indian Institute of Science, Bangalore, India. He worked as a post-doc at University of Pennsylvania in the area of Haptics and Virtual Reality. His research interests are in the areas of unmanned vehicles particularly flapping flight, mechatronics, robotics, MEMS, virtual reality and haptics, and teaching with technology. He has ongoing research in flapping flight, Frisbee flight dynamics, lift in porous material and brain injury He is an
Inquiry-Based Green Chemistry into Undergraduate Laboratory Courses via Silver Recycling in a Closed Loop, Multi-course Process” (role as Co-PI). c American Society for Engineering Education, 2019 An interdisciplinary Research-based Education Program for Engaging Plant/Agriculture Sciences, Chemical Sciences and Engineering Students (iREP-4-PACE) at Minority InstitutionsAbstractAn interdisciplinary Research-based Education Program for Engaging Plant/Agriculture sciences,Chemical sciences and Engineering students (iREP-4-PACE) is envisioned with the underlyingintent to improve Tuskegee University's (TU’s) STEM retention through the introduction ofinterdisciplinary, guided, inquiry
typically expressed in units of pounds per square foot (PSF). Even if thisvalue were measured by a laboratory test for the clay soil the helical pile is being driven into,there would still exist the aleatory variability of the natural material. However, in many cases,the strength of the soil is estimated from some other soil property that is easily, and cheaply,measured such as soil type. Thus the engineer must use ‘engineering judgement’ to estimate howmuch axial capacity a helical pile can safely hold. A commonly used correlation for soil strength,cohesion, and consistency is shown in Table 1 from Terzaghi and Peck [11].Table 1. Soil consistency and ranges of soil strength [11] Soil Consistency
; ConsiderationsIdentification of VR training topics for digital manufacturing educationVR, as an instructional training tool for Digital Manufacturing presents the potentials ofpromoting student interest in the training/learning process. VR is a proven tool that can engagelearners effectively and the enhanced engagement can be attained by actively involving theparticipant or trainee in the process (Toth, Ludvico, & Morrow, 2014, Chandramouli, Zahraee, &Winer, 2014, Jin & Nakayama, 2013, Jen, Taha, & Vui, 2008). Laboratory exercises inmanufacturing curriculum are not always able to meet the demands of the advancedmanufacturing need in their conventional form with the traditional experiments. Virtuallaboratories, on the other hand, can be built to
Virtual Reality for Green Energy Manufacturing Education AbstractThis paper presents the project-based learning result of green energy manufacturing integratedwith virtual reality (VR). This work provides an innovative solution for optimizing learningeffectiveness and improving educational outcomes through the development of virtual models thatcan be used and integrated into the existing renewable energy laboratory. The goal is to apply theseprototypical simulators to train undergraduate engineering students and professionals in windenergy education; and to offer experiential learning opportunities in 3D modeling, simulation, andvisualization. The students were given multiple projects
at Texas A&M University. Prior to joining Texas A&M, he was an researcher at KBSI in College Station, Texas. He received his Ph.D. in Mechanical Engineering from Texas A&M University. Dr. Fang's teaching and research interests are in manufacturing processes , nondestructive testing technologies, and acoustic noise reduction.Michael Johnson, Texas A&M University Johnson is an assistant professor in the Department of Engineering Technology and Industrial Distribution at Texas A&M University. Prior to joining the faculty at Texas A&M, he was a senior product development engineer at the 3M Corporate Research Laboratory in St. Paul, Minnesota. He received his S.M. and
manner ‚ Page 12.446.2 Ability to learn about the latest trends in thermal management or pertinent field of study ‚ Ability to design and build laboratory equipment, and high value-added or high end products ‚ Ability to learn how to assemble equipment and components from different suppliers at low costIn the case of advanced thermal systems, students, engineers and plant managers should alsopossess or acquire the necessary technical skills to meet future energy-related challengesincluding energy conservation in a competitive global economy. Students should have the abilityto specify fluid mechanics and heat transfer
implemented by our Biomedical Engineering Program. This 1new model consists of a sequence of four courses spanning the junior and senior years. It wasdeveloped to ensure that all students receive repeated exposure to a wide range of skills relevantto the biomedical engineering profession as well as those required for accreditation. The topicscovered include a wide range of ‘soft’ skills,5 such as regulatory issues, environmental impacts,and project management, in addition to laboratory-based ‘hard’ skills, such as rapid prototypingand computer-aided design (CAD). While this sequence does not address the issue of the seniorcapstone being the students’ only exposure to open-ended design, it does provide
2006-1676: CAPSTONE DESIGN, MECHANICAL ENGINEERING PROJECT ORPERSONNEL MANAGEMENT CHALLENGE?Richard Goff, Virginia Tech RICHARD M. GOFF Richard Goff is an Associate Professor and Assistant Department Head of the Department of Engineering Education in the College of Engineering at Virginia Tech. He is also the Director of the Frith Freshman Engineering Design Laboratory and the Faculty Advisor of the VT Mini-Baja Team. He is actively involved in bringing joy and adventure to the educational process and is the recipient of numerous University teaching awards.Janis Terpenny, Virginia Tech JANIS P. TERPENNY Janis Terpenny is an Associate Professor in the Department of Engineering
. Page 11.1072.5 Reductionism is generally the accepted approach for attaining a Ph.D. in science, technology, engineering, and mathematics. While extending one’s specialized (Ph.D. level) knowledge to a broader problem can provide new and nontraditional approaches, it is more likely to not lead to a successful result. The same applies at the departmental level. At USU the name change required bringing in new faculty with specialization in chemical engineering, bioengineering, Materials Science, and analytical chemistry to complement the old guard rooted in traditional Agriculture and Irrigation Engineering. The breadth of faculty knowledge extends beyond the walls of the classroom or teaching laboratory into faculty
interfaces, andprogramming using the Parallax Boe-Bot Robot. In addition, students are briefly introduced toindustrial robot modeling and programming using CNC Technology. Experiments using the RS-55 industrial robot arm will reinforce the theory introduce in class”.Course Objectives and OutcomesThe course is structured into a three credit hour lecture and a one credit hour laboratory. Thelectures included conventional power point presentations and in class demonstrations. In thelaboratories students implemented concepts learned during the lecture. The content of the lecturewas set in a progressive fashion so that the construction of the laboratory platform coincidedwith the topics being discussed in the lecture. By mid semester the platform was
Page 23.789.1 c American Society for Engineering Education, 2013 Integration of Sensors and Low-Cost Microcontrollers into the Undergraduate Mechanical Engineering Design SequenceAbstractIn most undergraduate engineering degree plans the engineering design curricula include classessuch as Introduction to Engineering, Statics, Dynamics, and Mechanics of Solids. They usuallydo not have laboratory components to help students understand concepts through hands-onexperience. This paper presents the development and implementation of an educational low-costdevice/tool that can be set up and used by students in and out of their engineering classes toassist their learning. The goal of this project was
Delco Electronics as a subsidiary of General Motors Hughes Electronics). Dr. Wagner is a Professor and Chair of the Dynamic Systems and Controls Group at Clemson. His research interests include nonlinear and intelligent control systems, dynamic system modeling, diagnostic and prognostic strategies, and mechatronic system design. He has developed the multi-disciplinary Rockwell Automation Mechatronics Educational Laboratory which features hands-on robotic, programmable logic controller, electronic, and material handling experiments. He is a former As- sociate Editor of the ASME Journal of Dynamic Systems, Measurement, and Control and IEEE/ASME Transactions on Mechatronics, respectively. Dr. Wagner is a licensed
Paper ID #10151A longitudinal study on the effectiveness of the Research Experience for Un-dergraduates (REU) program at Missouri University of Science and Technol-ogyDr. Hong Sheng, Missouri University of Science and Technology Dr. Hong Sheng is an Associate Professor in Information Science and Technology (IST) at Missouri University of Science and Technology (Missouri S&T). She is also co-director of the Laboratory for Information Technology Evaluation (LITE) at Missouri S&T. Her research interests include trust and privacy issues in information systems, mobile and ubiquitous applications, usability and eye tracking
ahigher level of learning than that of students in traditional classes. Meyers and Jones2 argued thatactive learning encourages students to participate in activities that promote cognitive Page 23.133.2modification or acquisition of knowledge. This paper presents a classroom in which learning isactive every day, technology is used in the service of teaching, and the teacher is a guide thatfacilitates student learning. Figure 1. The ACE classroom combines research, curricular design, teaching strategies and laboratory in the same environment.The design of the ACE classroom is based on research initiated by Robert
Session 1526A Web-based Learning Tool that Introduces Engineering Concepts by Simulating a Chemical Reactor Jay B. Brockman, Jucain Butler, and Mark J. McCready University of Notre DameAbstractThe arrival of the World Wide Web signaled the beginning of fundamental changes in howteaching, training, and self-directed learning will occur at all ages and stages of life. Because ofits versatility as a learning tool in the realm of higher education, the Web has woven its way intoengineering classes and laboratories. As a supplement to a Chemical Engineering project in