25.1075.1 c American Society for Engineering Education, 2012 Professional Development-Styled Short Courses for a Highly Effective Bioprocess Engineering Laboratory ExperienceAbstractProfessional development-styled short courses often provide working engineers an intensivehands-on learning experience that is difficult to achieve within the confines of the dailyworkplace. Can this model be extended into engineering education and provide engineeringstudents hands-on laboratory experiences that are difficult to achieve within the confines ofcampus? This collaborative project between the Engineering Department at East CarolinaUniversity (ECU) and the BioNetwork Capstone Center, an industrial-scale
. She also conducted an NSF-funded ethnographic study of learning in a problem-driven, project-based bio-robotics research lab at Georgia Tech. In addition to her duties in BME, she is a member of the interdisciplinary research team conducting the Science Learning: Integrating Design, Engineering, and Robotics (SLIDER) project.Dr. Essy Behravesh, Georgia Institute of Technology Essy Behravesh is the Director of Instructional Laboratories in the Department of Biomedical Engineering at the Georgia Institute of Technology. He holds a B.S. in chemical engineering from the University of Florida and a Ph.D. in bioengineering from Rice University
liberty to investigate systems that are difficult to model1. Unfortunatelyhowever, for a variety of logistic and economic reasons, conventional telecommunicationscourses in Nigerian educational institutions are often unable to include sufficient laboratorycomponents to serve their students 2.A possible remedy to this problem is the use of remote laboratories (rlabs). Rlabs arearchitectures in which users interact with remote real equipment using appropriate webbrowser-delivered user interfaces 3, 4. They facilitate more efficient sharing of a wide rangeof lab resources like unique and expensive equipment and greatly simplify the logisticrequirements of laboratory work like scheduling of equipment, lab space, staffing and safetyof the users and
physical education teacher. He has also co-authored multiple papers and conference presentations related to physical education teacher professional development.Dr. Marcia A. Pool, Purdue University Marcia Pool is an Instructional Laboratory Coordinator in the Weldon School of Biomedical Engineering at Purdue University. She is responsible for overseeing and assessing junior level laboratories, bioin- strumentation, and biotransport, and is involved with teaching and mentoring students in the senior de- sign capstone course. Recently, she has worked with colleagues to plan and implement a problem-based learning approach to the biotransport laboratory to improve students’ experimental design skills and has modified
AC 2012-3742: FACILITATING GROUP WORK: TO ENHANCE LEARN-ING IN LABORATORY BASED COURSES OF ENGINEERING EDUCA-TION IN INDIADr. Sujatha J., Mission10X, Wipro Technologies Sujatha J. is academically qualified with a Ph.D. in signal processing, from Indian Institute of Science, Bangalore, India, and has more than 24 years of academic and industry experience. Over the years, Sujatha has participated in not only academic teaching and research but also in academic counseling for students, professional development programs, curriculum development, industry-institution relationship activities, and prototype development and team building. Currently, Sujatha is a core member of Research Center, Mission10X, Wipro Technologies
AC 2012-4676: FOSTERING STUDENTS’ CAPABILITY OF DESIGNINGEXPERIMENTS THROUGH THEME-SPECIFIC LABORATORY DESIGNPROJECTSDr. Hyun W. Kim, Youngstown State University Hyun W. Kim is a professor of mechanical engineering in the Department of Mechanical and Indus- trial Engineering at Youngstown State University. He has been teaching and developing the Thermal Fluid Applications course and the companion laboratory course for the past few years. He is a registered Professional Engineer in Ohio and is currently conducting applied research in hydraulics and micro gas turbines. He helps the local industry and engineers with his expertise in heat transfer and thermal sciences. Kim received a B.S.E. degree from Seoul National
reputation for his research in the areas of computational fluid dynamics, fluid particle systems, and fluidization. His computational work has shortened the time lag from laboratory- to commercial-scale for fluid/particle and fluidized bed systems. He currently serves on the editorial board of the Powder Technology Journal. He has received several AIChE awards includ- ing the Donald Q. Kern Award in Heat Transfer and Energy Conversion, the Fluor Daniel Lectureship in Fluidization and Fluid/Particle Systems, the Ernest W. Thiele Award, and the Fluidization Process Recognition Award. He is also a Fellow of AIChE.Mr. Mohamed Shahidehpour, Illinois Institute of TechnologyMr. Joseph Clair P.E., Illinois Institute of Technology
. Currently, he is working on the development of 3D virtual laboratory for solid mechanics lab. Page 25.724.1 c American Society for Engineering Education, 2012 Implementation and Assessment of Virtual Reality Experiment in the Undergraduate Thermo-fluids laboratoryAbstractResults are presented from an NSF supported project that is geared towards advancing thedevelopment and use of virtual reality (VR) laboratories, designed to emulate the learningenvironment of physical laboratories. As part of this project, an experiment in the undergraduatethermo-fluids laboratory course
AC 2012-3980: INCREASING HANDS-ON LABORATORY EQUIPMENTEXPERIENCE VIA ROTATION OF NOTEBOOK RECORDING DUTIESDr. Peter Mark Jansson P.E., Bucknell University Peter Mark Jansson is currently an Associate Professor of electrical engineering at Bucknell University. Prior to joining Bucknell, he was with the Electrical and Computer Engineering Department at Rowan University and spent nearly 20 years in professional engineering in large and small firms and as a consul- tant. He received his B.S. degree from MIT, an M.S.E. from Rowan University, and his Ph.D. from the University of Cambridge. He is a Senior Member of IEEE and has more than 33 years of professional and academic experience in renewable energy and power systems
c American Society for Engineering Education, 2012 Introducing “Lab-on-a-Chip” Type Experimental Activities in “Thermodynamics and Heat Transfer Laboratory” CourseAbstractIn recent years, increasing industry demands for skilled graduates from universities has requireda substantial refocus on engineering technology programs across the nation towards improving oreven changing their traditional ways of imparting knowledge to students. One aim is toincorporate as much hands-on activities as possible in their curricula without having to curtail thetheoretical foundation and yet to stay within the total number of existing credit hours. However,adding more laboratory activities implies a financial burden on the department and
AC 2012-4159: INTRODUCING LABORATORIES WITH SOFT PROCES-SOR CORES USING FPGAS INTO THE COMPUTER ENGINEERINGCURRICULUMProf. David Henry Hoe, University of Texas, Tyler David Hoe received his Ph.D. in electrical engineering from the University of Toronto. He held a position as a Staff Engineer at the General Electric Corporate Research and Development Center for five years prior to assuming his current position as an Assistant Professor in the Electrical Engineering Department at the University of Texas, Tyler, in 2008. Page 25.844.1 c American Society for Engineering Education, 2012
AC 2012-3442: LAB-IN-A-BOX: TECHNIQUES AND TECHNOLOGIESTO MANAGE LARGE AND NOT SO LARGE LABORATORY COURSESMs. Justeen OlingerMichael HuttonMr. Christopher Gretsch CovingtonDr. Kathleen Meehan, Virginia Tech Kathleen Meehan is an Associate Professor in the Bradley Department of Electrical and Computer Engi- neering at Virginia Tech. She joined Virginia Tech in 2002 after having taught at the University of Denver (1997-1999) and West Virginia University (1999-2002). Her areas of research include optoelectronic materials and devices, optical spectroscopy, packaging for power electronic applications, and electrical engineering pedagogy.Dr. Richard Lee Clark Jr., Virginia Western Community CollegeMr. Branden McKagen
AC 2012-3676: OUTCOME OF AN ONLINE LABORATORY TO SUPPORTA MASTER PROGRAM IN REMOTE ENGINEERINGProf. Michael E. Auer, Carinthia University of Applied Sciences Since 1995, Michael Auer has been professor of electrical engineering at the Systems Engineering De- partment of the Carinthia University of Applied Sciences, Villach, Austria, and has also held teaching positions at the universities of Klagenfurt (Austria), Amman (Jordan), Brasov (Romania), and Patras (Greece). He was invited for guest lectures at MIT Boston, Columbia University, and the technical uni- versities of Moscow, Athens, and others. He is a senior member of IEEE and a member of VDE, IGIP, etc., author or co-author of more than 180 publications, and a
AC 2012-3136: USING A SYSTEMS ENGINEERING APPROACH FORSTUDENTS TO DESIGN AND BUILD LABORATORY EQUIPMENTDr. Tim L. Brower, University of Colorado, Boulder Tim L. Brower is currently the Director of the CU, Boulder, and Colorado Mesa University Mechanical Engineering Partnership program. Before becoming the Director of the partnership three years ago, he was a professor and Chair of the Manufacturing and Mechanical Engineering and Technology Department at Oregon Institute of Technology. While in Oregon, he served as the Affiliate Director for Project Lead the Way - Oregon. In another life, he worked as an Aerospace Engineer with the Lockheed Martin Corporation in Denver, Colo. He is an active member of ASEE, ASME, and
AC 2012-5331: COMPARATIVE STUDY OF THE FUNCTIONALITY ANDCOST EFFECTIVENESS OF ELECTRONIC LABORATORY VIRTUALINSTRUMENTATIONSDr. Lars K. Hansen, University of Texas, San AntonioMr. Keith Gerard Delahoussaye Jr., University of Texas, San Antonio Keith Delahoussaye is a student at the University of Texas, San Antonio. He is a member of the Multifunc- tional Electronic Materials Devices Research Lab of the Electrical Engineering Department. He is also a member of IEEE’s student chapter. Before graduation, he worked full-time for the U.S. Air Force as an Avionic Technician in the status of an Air Reserve Technician. He is hopeful to be an electronic/electrical engineering governmental employee. He is married and a proud
AC 2012-5393: DEVELOP A CROSS BROWSER COMPATIBLE DSP RE-MOTE LABORATORY WITH ZERO PLUG-IN INSTALLATIONMr. Daniel Osakue, Texas Southern UniversityXuemin Chen, Texas Southern UniversityMr. Chenyu Wang, Texas Southern UniversityOsman Ahmed Page 25.414.1 c American Society for Engineering Education, 2012 Develop a Cross Browser Compatible DSP Remote Laboratory with Zero Plug-in InstallationAbstractIn this paper, a framework for implementing Virtual and Remote laboratory (VR-Lab) ispresented. The framework includes three components which are hardware, software anddevelopment tool. The hardware includes
experience in curriculum development. Page 25.447.1 c American Society for Engineering Education, 2012 Development and Implementation of i-Laboratory for Instrumentation, Sensors, Measurements and Controls CoursesAbstractComputing, information and communication technologies have strong impacts on education, bysignificantly improving the distance and online collaborative learning, via the virtual or remoteexperiments and simulations. One of the distinguishing features of engineering technologyeducation is the laboratory work and hands-on experience as an integral part of the
B.S. degree in electrical engineering from Clemson University in 2002 and the M.S. and Ph.D. degrees in mechanical engineering from the Johns Hopkins University in 2004 and 2007, respectively. In 2008, he joined the faculty of Vanderbilt University as an Assistant Professor of mechanical engineering, where he currently directs the Medical & Electromechanical Design Laboratory. His current research interests include medical robotics, image-guided surgery, continuum robotics, and engineering education. Webster received the NSF CAREER Award in 2011, and the IEEE Volz award for Ph.D. thesis impact in 2011
AC 2012-3527: A LABORATORY-BASED, PROBLEM-SOLVING PEDA-GOGY PREPARES STUDENTS TO HIT THE JOB MARKET RUNNING!Dr. John Marshall, University of Southern Maine John Marshall received his Ph.D. from Texas A&M University and is the Departmental Internship Co- ordinator at the University of Southern Maine. His areas of specialization include power and energy processing, applied process control engineering, automation, fluid power, and facility planning.Mr. William Marshall, Alief Independent School District William Marshall is the Director of Instructional Technology and Career and Technical Education for the Alief Independent School District in Texas. He provides supervision of Program Managers in the areas of career
AC 2012-4486: A MOBILE LABORATORY AS A VENUE FOR EDUCA-TION AND OUTREACH EMPHASIZING SUSTAINABLE TRANSPORTA-TIONJeremy John Worm P.E., Michigan Technological University Jeremy John Worm is the Director of the Mobile Sustainable Transportation Laboratory at Michigan Tech and a Research Engineer in the Advanced Power Systems Research Center. Worm teaches several courses pertaining to hybrid vehicles, and IC engines. In addition to teaching, his research interests include internal combustion engines, alternative fuels, and vehicle hybridization. Prior to coming to Michigan Tech, Worm was a Lead Engine Development Engineer at General Motors, working on high efficiency engines in hybrid electric vehicle applications.Dr
AC 2012-3301: A PHYSICS LABORATORY ACTIVITY TO SIMULATETHE OPERATION OF THE TOUCHSCREEN ON A SMARTPHONEProf. Gary P. Hillebrand, University of Detroit Mercy College of Engineering and ScienceMs. Meghann Norah Murray, University of Detroit Mercy Meghann Murray has a position and conducts research in the Department of Chemistry & Biochemistry at University of Detroit Mercy. She received her B.S. and M.S. degrees in chemistry from UDM and is certified to teach high school chemistry and physics. She has taught in programs such as the Detroit Area Pre-college and Engineering program. She has been a judge and mentor with the Science and Engineering Fair of Metropolitan Detroit, FIRST Lego League, and FRC Robotics. She
AC 2012-3046: AN APPROACH TO USING UNDERGRADUATE STUDENTTEAMS TO DEVELOP UNDERGRADUATE LABORATORY EXPERIENCESLt. Col. Kevin A. Gibbons Ret., U.S. Air Force Academy, NexOne, Inc., and CAStLE Kevin Gibbons is a Senior Scientist for NexOne, Inc., in the Center for Aircraft Structural Life Extension (CAStLE) located at the USAF Academy in Colorado Springs. He taught in the AF Academy Department of Engineering Mechanics for four years, where he earned his Assistant Professorship and served as the Director of the Applied Mechanics Laboratory. He currently works as an advisor for a senior capstone research team and mentor to multiple mechanical instrumentation project teams. He earned a B.S. in mechanical engineering with
AC 2012-3202: APPLICATIONS OF MODERN PHYSICS: A SOPHOMORE-LEVEL PHYSICS COURSE AND LABORATORY FOR ELECTRICAL EN-GINEERING STUDENTSDr. Marie Lopez del Puerto, University of Saint Thomas Marie Lopez del Puerto completed her B.S. in physics at Universidad de las Americas, Puebla in Puebla, Mexico, and her Ph.D. in physics at the University of Minnesota, Twin Cities, in Minneapolis, Minn. She is currently an Assistant Professor in the Physics Department at the University of St. Thomas in St. Paul, Minn. Her research interests include the structural, optical, and electronic properties of nanoscale systems, computational physics, and physics and engineering education
embedded system technology resulted in large volume commercial sensor production. At Ford, he also developed the first spectroscopies directed to microelectronics systems based on scanning tunneling microscopy. From 1986 through 1994, at the Jet Propulsion Laboratory, he initiated the NASA Microin- strument program for distributed sensing. In 1994, Kaiser joined the faculty of the UCLA Electrical Engineering Department. Along with Professor Pottie, he initiated the first wireless networked microsen- sor programs with a vision of linking the Internet to the physical world through distributed monitoring. This continued research includes the topics of low power embedded computing for wireless networked sensing, biomedical
GC 2012-5663: AN AGENDA FOR FUTURE DIRECTIONS FOR ENHANC-ING INTERNATIONAL COLLABORATION AMONG FACULTY, STUDENTS,CURRICULAR, AND LABORATORY DEVELOPMENTDr. R. Natarajan, Indian Institute of Technology R Natarajan received his B.E. degree in Mechanical Engineering from the University Visvesvaraya Col- lege of Engineering (of the then Mysore University) in 1961. Subsequently he obtained the M.E. degree of the Indian Institute of Science, Bangalore; and the M.A.Sc and Ph.D degrees from the University of Waterloo, Canada. He has worked as a National Research Council Fellow in Canada, and as a Humboldt Research Fellow in Germany. He served as The Director of the Indian Institute of Technology, Madras from 1995 to 2001
Active Learning by Lecture and Laboratory Integration in an Emerging Engineering Program A. Ieta1, R. Manseur1, and M. Hromalik1Abstract – The development of a new Electrical and Computer Engineering program provides an opportunity fordesigning and implementing an innovative curriculum. In terms of teaching methods, a combination of lecturing andhands-on learning is selected. Studio-style teaching is reported to enhance student learning, compared to theclassical lecture and lab formats. However, course organization is different and requires adaptation and innovation incourse design, content, and delivery. A studio lab was organized and new equipment was acquired for laboratorystations that
team received a second NSF grant to continue their work. The new project willlargely focus on the development of a few more key modules, the enhancement of several of theexisting modules with defined laboratory exercises and kits and a published digital media for usewith the modules. This paper will provide background on the first NSF project and describe thecurrent and pending accomplishments with the most recent project. Details will be presented onthe project’s modular approach to aerospace manufacturing education including: topic selection,module development, lab kit development, module implementation, and module dissemination.Current State of the Aerospace IndustryThe aerospace manufacturing industry continues to face a myriad of
presence of a prototype exemplar in an introductorydesign experience is described. The design experience occurred early in an Introduction toEngineering course following a single lecture on the engineering design process. The designactivity, necessarily simple at this stage, consisted of designing, building, and testing a dragracer, constructed from LEGO® MINDSTORMS® NXT parts and powered by a single rubberband. Students participating in the design experience were divided into two functional groups:laboratory sections where a prototype exemplar was present and laboratory sections were noexample was provided. Assessment of the prototype exemplar impact was accomplished througha two-pronged approach. First, photographs of each racer were taken at