surveys were administered prior to and after this one semester course and focused on: (1)a priori knowledge and experience of the other group’s subject area; (2) effect ofinterdisciplinary project on interest in other group’s subject area; and (3) perceptions of othergroup’s profession and/or their skills. Survey results showed that neither ME nor ECE students had a prior exposure to theother discipline. After completing the course, ME students perceived that they knew more aboutchild development, play, and the design of children’s toys, and ECE students reported they betterunderstood the types of engineering disciplines. Interesting, ECE students less positively ratedtheir ME counterparts post versus pre-course in the following areas
Education in Science, Mathematics, Engineering and Technology (CRESMET), and an evaluator for several NSF projects. His first research strand concentrates on the relationship between educational policy and STEM education. His second research strand focuses on studying STEM classroom interactions and subsequent effects on student understanding. He is a co- developer of the Reformed Teaching Observation Protocol (RTOP) and his work has been cited more than 1800 times and his publications have been published in multiple peer-reviewed journals such as Science Education and the Journal of Research in Science Teaching.Lydia Ross, Arizona State University Lydia Ross is a doctoral student and graduate research assistant at
of Engineering at Peking University, College of Engineering and Science atHuazhong University of Science and Technology, College of Modern Engineering andApplied Science at Nanjing University and so on. These engineering schools providemulti-faceted and multi-channeled funds for undergraduate engineering students totake international project internships, short-term international exchange programs, andfinish their capstone design projects overseas. Moreover, a number of engineeringschools in China adopt a “3+2” or “3+1+1” [12] dual-degree/joint degree collaborativeeducation to cultivate engineering talents by cooperating with overseas universities,providing opportunities for engineering students to study at home and then abroadduring their
George W McNelly Professor in Electrical and Computer Engineering Technology at Purdue University, West Lafayette, In- diana, USA. He received a Ph.d. from Purdue University in 1995. He is the founder and director of two industry sponsored applied research labs: Power Electronics Development and Applications Lab (PEDAL) and Smart Meter Integration Lab (SMIL). He is the Principal Investigator of one of 10 Global Innovation projects funded by the US department of State, Rapid, Smart Grid Impact RSGI), partnering with DeMontfort University in Leicester, UK, and UNESP in Sao Paulo, Brazil. He has been a Certified Energy Manager (CEM) since 1998.Mr. Naveen Kumar Koyi, Purdue University, West Lafayette Naveen Kumar was
program which may make the sample less comparable toother engineering students at similar points in their academic career. As such, we delve deeperinto the context of the study. The study happened in an upper division project-based engineeringprogram which is part of the extended campus of a medium size public university in theMidwest. The course had a total of 28 students and 17 of the 28 fully participated and consentedto the research. Each semester the students in the program are placed on vertically integratedteams, meaning first and second semester juniors (J1s and J2s) are working with seniors (S1s andS2s), and assigned a project of the scope and scale of a typical capstone project. Students earnsix credits for completing this project
) ethics, 8) interdisciplinary research, 9) multidisciplinary skills, 10) disciplinary knowledge, 11) informatics, and 12) design. This paper only described the evaluation method and no results were presented. • One NRT studied 12 participants in their 3rd, 4th and 5th year of graduate studies (Denton & Borrego) via semi-structured interviews of 10-40 minutes in length, focusing on the influence of the NRT over their career preparation and choices. Among participants, they found a lack of stigma around non-academic career paths, which was credited to the interaction of NRT students with non-academic entities through internships and capstone design projects outside of academia. Students were
, since they will learn to look at the problem from differentangles before choosing a suitable path forward.2. Encourage internships.Internships are a great way to prepare students for careers on multi-disciplinary teams. Onebenefit is to allow students to learn if they like and think they can thrive in that environment. Thesecond is to already start acquiring the necessary skills to succeed in these positions early on.Internships which have a component around rotation across teams, also allow students to gainwider appreciation of how different positions interact, before having to dive deep into one role.On completion of junior-year internships, students can then bring back acquired skills to theirfinal year classes, capstone projects, and
engage joint PWI-MSI teams in the US education and research enterprise. The IECis a novel collaboration among nearly 20 MSIs, most of whom participated in an NSF fundedmulti-year, engineering education project. This new organization was built on the idea that thiscollaboration can be leveraged and moved to the next level to provide higher capacity building ateach of the consortium members. The hypothesis is that there are windows of opportunity openthrough establishment of research and educational collaborations between its MSI members withPWI research-intensive institutions. This is especially true since its member institutions serve aunique population of minority students. The IEC is developing the infrastructure and programs tofacilitate
completionof the course, students will be able to: 1. Complete a flowchart of how to solve a problem; 2. Use a computer program to solve an engineering problem; 3. Correctly and clearly plot the results of calculations; 4. Program a microprocessor; and 5. Use software to accurately represent a 3-dimensional object.Prior to this curriculum change, mechanical engineers were not all exposed to microprocessorprogramming. A number of students employed them in club, competition, or capstone projects,but this was generally a minority. Department faculty decided to seize the opportunity in thisnew course to introduce microcontrollers to all mechanical engineering students. Not only is itan engaging way of exercising and reinforcing recently
NanoJapan: International Research Experiences for Undergraduates(NanoJapan IREU) and the RQI Research Experiences for Undergraduates (RQI REU)programs for comparison because both programs are funded by the NSF, headquartered at RiceUniversity, recruit participants from universities nationwide via a competitive selection process,enable students to participate in cutting-edge research in fields related to nanoscale and atomic-scale systems, phenomena, and devices, and require participants to present topical researchposters on their summer projects at a summer research colloquium as a capstone experience.The NanoJapan: IREU Program, the key educational initiative of the NSF PIRE grant awardedto Rice University in 2006, is a twelve-week summer program
Engineering Sciences and Materials at the ˜ University of Puerto Rico, MayagA¼ez Campus (UPRM). He earned B.S. degrees in Civil Engineering and Mathematics from Carnegie Mellon University (1993) andDr. Nayda G. Santiago, University of Puerto Rico, Mayaguez Campus Nayda G. Santiago is professor at the Electrical and Computer Engineering department, University of Puerto Rico, Mayaguez Campus (UPRM) where she teaches the Capstone Course in Computer Engineer- ing. She received an BS in EE from the University of PR, MayaDr. Lourdes A. MedinaDr. Ivan J. Baiges-Valentin, University of Puerto Rico, Mayaguez Campus ©American Society for Engineering Education, 2023
for 5 of the 7 engineering majors at UT. 9Summer: Team Building Project A major focus of the TranSCEnD experience is a summer program where studentsvoluntarily participate in a multidisciplinary capstone group project. The high impactcapstone project will incorporate aspects of materials science and civil, environmental,mechanical, and electrical engineering to build a solar thermal heating system or both an offgrid/grid-tied solar electric system; the projects will alternate every other year. The projectswill supplement the summer lecture coursework with a hands-on experience that will give thestudents opportunity to cement a series of
III 2023 – ENGT 4250, Linear Electronics [SO 5 (PI-Analog)] & Capstone Experience [SO 6 (PI-Design, Implement & Manage Project)] Fall 2023 - August 2023 - Faculty Retreat – Faculty will discuss the results and findings for follow up on recommendations and action as needed.Academic Year 2023-24 Schedule – Assessment, Evaluation, and CI – BS EET SO 1, 4 Schedule for: (a) Student Learning Self-Evaluation Survey (Indirect) (b) Faculty Assessment of Student Learning Survey (Indirect) (c) Performance Indicators (direct) – See SOs highlighted for specific course offerings. Fall II 2023 – ENGT 2240, Electronics FUND II [SO 1 (PI-Circuit Design & Engineering Problem Solving)] Spring Semester – Jan. 2024 – “Faculty Return to work week
learning). The social, behavioral and cognitive theoriesthat underpin cooperative learning support students to share their motivation and work towards acommon goal, and structure new knowledge by linking to existing knowledge. Another exampleis project-based learning, defined as self-directed and collaborative work to apply knowledge to alegitimate problem [12]. Problem based learning is commonly used as the model in capstonedesign courses for engineering majors, where students apply their previously gained knowledgeto a final year project [13], and work in small groups to solve a problem in a self-directedmanner [14].2.2 – Models of expertise sharingDistributed expertise within an educational setting, with its roots in Lave’s situated
availability. Overall, a total of six experiments are performed: a calibrationexperiment, three core unit operations experiments (focusing on heat transfer, fluid flow, andseparation process), an operability study, and a final project. A full detail calendar for the term isshown in Table 1. The calibration experiment is the first required report, and it is focused onverifying the existing instrumentation or recommend a calibration for a piece of equipment suchas a rotameter or pump. For the three core experiments, the students have two weeks ofexperimentation and one additional week to write a report. The operability study is performedduring one week of experimentation, and the students make a presentation or write a two-pagememo to summarize their
interest in socio-scientific issues, and how they saw the role ofethical reasoning in their future profession as an engineer.Brief field notes taken after each interview helped in the preliminary data selection. Two of theinterviewed students, Tom (a junior-year engineering major) and Matt (a junior-year computerscience major), talked about weaponized drones as part of their interview. They had writtenabout this topic in their sophomore year as part of a capstone research project in the STSprogram. Besides the thematic congruence, another thing that caught our attention was that bothstudents regarded drone warfare to have negative consequences but, to different degrees, wantedto absolve the designing engineers of bearing responsibility.One of us
capstone projects. Curricula in thisnovel first-year program utilizes the Crick model of deep engagement [6] that demonstrates thelayered contexts of engaging students. The personal, social, and global contexts within whichlearning takes place may be a roadmap for implementation of micro-insertions using rhetoricalstrategies, since “representations of reality [that] are constructed through articulation” willcombat the discursive construction of engineering ethics and social impacts as separate fromrather than integral to and imperative for productive society, [17, pp. 47], [23].RecruitmentIn this study the authors approached faculty who teach the novel first-year engineering programsequence, and general and electrical engineering courses. Faculty
-as-usual. Social justice should not be invisible in engineering education and practice [52]. Facultyprovide social justice examples from all three specializations throughout the curriculum. In addition, faculty embed four social justice case study projects in four semesters of thecurriculum: ENGR 101: Introduction to Freshman Design, ENGR 201: Experiential Engineering,ENGR 321: Electronic Circuits & Devices, and ENGR 381/382/383: Specialty Capstone DesignI. The case study format varies each semester. Freshmen groups are introduced to the case studyapproach in ENGR 101, when each group reviews assigned documents of a case, and then laterdescribes the case to other groups during a reserved course meeting. These sets of case
engineeringsciences to place them closer to the engineering side of the spectrum. As a consequence, thecreation of the engineering programs could be accomplished through additional classes inmathematics, expansion of use of this new material in existing classes, increase in designexperiences in the curriculum, and the expansion of the capstone project experience. The need toadd significant additional new content as new classes was limited to the areas of Design forManufacture and Assembly and Machine Design. Table 1 summarizes the courses offered in thenew program. More details on the challenges of creating a program by transition will bediscussed in a later section of this paper. Page 26.393.5
oxidative stress in in vitro models of Parkinson’s disease. During her prior graduate and postdoctoral work in neurodegeneration, April mentored several undergraduate, graduate, and clinical researchers and developed new methods for imaging and tracking mitochondria from living zebrafish neurons. In her work for the EERC and Pitt-CIRTL, April Dukes collaborates on educational research projects and facilitates professional development (PD) on instructional and mentoring best practices for current and future STEM faculty. As an adjunct instructor in the Department of Neuroscience at the Univer- sity of Pittsburgh since 2009 and an instructor for CIRTL Network and Pitt-CIRTL local programming since 2016, April is
STEM fields, Engineering in Education and Access to Post-Secondary Education. From August 2006 through February 2008, she was the Associate Dean of Academic Affairs of the College of Engineering. She was Co-Pi of the NSF’s UPRM ADVANCE IT Catalyst Project awarded during 2008. From 2008-2016, she was Co-PI of the USDE’s Puerto Rico Col- lege Access Challenge Grant Project. From 2015-2018, she was the Coordinator of the UPRM College of Engineering Recruitment, Retention and Distance Engineering Education Program (R2DEEP). Currently, she is Co-PI of the project ”Recruiting, Retaining, and Engaging Academically Talented Students from Economically Disadvantaged Groups into a Pathway to Successful Engineering Careers
Paper ID #242532018 CoNECD - The Collaborative Network for Engineering and ComputingDiversity Conference: Crystal City, Virginia Apr 29A WiSE Approach: Examining how Service Learning Impacts First-yearWomen in STEMDr. Amber Manning-Ouellette, Iowa State University Amber Manning-Ouellette, Ph.D. is a lecturer of leadership studies at Iowa State University. Dr. Manning- Ouellette teaches several courses in the Leadership Studies Program including leadership strategies in a diverse society, women and leadership, and the leadership research capstone. She is also the director of the global leadership study abroad program which
to excellence in undergraduate engineering education. Focus areas include contemporary teaching and learning technologies, capstone, VIP, special degree programs with partnering academic institutions, and K-12 outreach. Dr. Filippas is especially proud of her collaboration with NSBE at VCU, an organization that embodies excellence in academics as well as community service, leadership and diversity. In addition, Dr. Filippas was instru- mental in establishing oSTEM on the campus as well as reaching out to other underrepresented minority groups to further the university’s commitment to student success and inclusive excellence.Dr. Lorraine M. Parker, Virginia Commonwealth Universtiy Dr. Parker received her Ph.D. from
Paper ID #30116Analyzing Student Achievement to Measure the Effectivenss of ActiveLearning Strategies in the Engineering ClassroomSarah Hoyt, Arizona State University Sarah Hoyt is currently the Education Project Manager for the NSF-funded JTFD Engineering faculty development program. Her educational background includes two Master’s degrees from Grand Canyon University in Curriculum and Instruction and Education Administration. Her areas of interest are in student inclusion programs and creating faculty development that ultimately boost engagement and per- formance in students from lower SES backgrounds. Prior to her role
Academic Affairs, Southeast Universityincharge of ad- ministration of the university’s teaching research projects for undergraduate programs, also undertook the national social science fund project, published a number of teaching reform papers in the core journals. c American Society for Engineering Education, 2019 Field Programs to Accomplish the Learning Objectives for Engineering Courses: A case study of Road Surveying and Design Course at Southeast University, ChinaAbstractBackground: China Engineering Education Accreditation Association (CEEAA)emphasizes advancing the learning objective requirements of the Chinese studentsmajoring in engineering disciplines to the
Paper ID #42244Exploring Civil Engineering and Construction Management Students’ Perceptionsof Equity in Developing Infrastructure ResilienceMiss Rubaya Rahat, Florida International University Rubaya Rahat grew up in Bangladesh, where she pursued her Bachelor of Science in Civil Engineering at the Bangladesh University of Engineering and Technology (BUET). After graduating she worked for two years in a construction management company in Dhaka, Bangladesh. She was involved in various residential and infrastructure construction projects. Rubaya now is a Ph.D. candidate at Department of Civil and Environmental Engineering
from the Software Engineering Master’s Program.Two distinctive aspects of the Stevens engineering curriculum are the traditional breadth ofengineering education (see Figure 1) and the integrative, eight-course Design Spine The DesignSpine is a fundamental component of the engineering curriculum that is required for all B.E.students, regardless of discipline. It consists of eight core design courses taken throughout alleight undergraduate semesters of study including a two-semester capstone senior design project,which introduces students to the underlying principles of engineering design through hands-onand project-based learning [7]. For the software engineering students, the senior design projectwill be a multi-disciplinary project focused on
and nature of asset-based practices both in theory and practice, andhelped identify a variety of practical asset-based pedagogical strategies from community-inspireddesign projects and asset-mapping to translanguaging and cross-institutional faculty professionaldevelopment initiatives. We believe that these findings will potentially motivate the engineeringeducation community to actively implement asset-based approaches in design instruction, andfurther develop and test more nuanced strategies that draw upon students’ funds of knowledgeand cultural wealth.IntroductionEngineering design is typically recognized and taught as a team activity, with cornerstone andcapstone project-based courses requiring students to work on teams and to navigate
freshman or capstone engineering classes that have a fairly broad scope of learningobjectives. This paper describes the design and assessment of a service-learning module in arequired junior-level course in probability and statistics for engineering students at a large publicuniversity, which typically enrolls 90-100 students. This course is ideal for service learningbecause students struggle with the material, complaining it is “too theoretical”, and can feelanonymous in a large lecture course. Yet, there are few examples of how to successfullyintegrate service-learning ideas, including reflection activities, into a high-enrollment course thattraditionally focuses heavily on quantitative fundamentals.This paper details the design, student work
Paper ID #11940Engaging Freshmen Women in Research – Feedback from Students and BestPractices for FacultyMs. Terri Christiansen Bateman , Brigham Young University Terri Bateman is adjunct faculty in the Brigham Young University College of Engineering and Technol- ogy where she has worked with Women in Engineering & Technology at BYU, numerous mechanical engineering capstone senior design teams, and the Compliant Mechanisms Research Group. She received her bachelors and masters degrees in Mechanical Engineering from BYU, and also worked at Ford Motor Company as a manufacturing and design engineer in Automatic